draft EN 301 234 V2.1.1 (2004-08-12)

European Standard (Telecommunications series)

Digital Audio Broadcasting (DAB);
Multimedia Object Transfer (MOT) protocol

Union Européenne de Radio-Télévision

European Broadcasting Uniy
EB

U
UER

ETSI %

2 draft EN 301 234 V2.1.1 (2004-08-12)

Reference
REN/JTC-DAB-MOT-1 (bfc00ioo.PDF)

Keywords

DAB, digital, audio, broadcasting, multimedia,
protocol

ETSI

Postal address
F-06921 Sophia Antipolis Cedex - FRANCE

Office address

650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +3349294 42 00 Fax: +334936547 16
Siret N° 348 623 562 00017 - NAF 742 C
Association & but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Internet

secretariat@etsi.fr
Individual copies of this ETSI deliverable
can be downloaded from
http://www.etsi.org
If you find errors in the present document, send your
comment to: editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards I nstitute 1999.

© European Broadcasting Union 1999.
All rights reserved.

ETSI

3 draft EN 301 234 V2.1.1 (2004-08-12)

Contents

Intellectual Property RIGNES.......ooi it e e e e e e s snne e e e s nnnaeeeeenees 6
[(=0 (o IR 6
(o= Y o (o I (o 1Y 2025 I TSP RPRRRRRRRIN 7
1 00 8
2 RS L= € 16 TR PR 8
3 Definitions, abbreviations and maintaining tables of registered values...........ccccoccvveeivciiee e 11
31 (B L= T aTE 0] TSR 11
3.2 PN o) o g =Y/ = (0] 1TSS 13
33 Maintaining tables Of regiStEred VAIUES ..ottt s s 13

4 General description of the MOT protocol
41 Requirements of Multimediaservices
42 Problems MOT solves

43

5

51

511

512

513

514

5.2

521

522

53

531 Single object transmission (MOT hEAdEr MO AE)........ccvveirieiririreireseete st es s snses
5311 Repetition 0N ODJECL IEVEL........c.cceceeecce s

5312 Repetition of MSC data groups/ MOT segments

5313 Repeated transmission of header information (combined with repetition on object level)cvvveevvecccnines 23
532 Multiple object transmissions (MOT dir€Ctory MOUE)..........ccceururerrerrereiereirisessse s sssssesssssssssssssssessssens 24
5321 Interleaving MOT entitieSin 0NE MOT SITEAIM........ccuecueiierecie ettt s bt se s s st s ssssesessnas 25
6 MOT header INFOMMIBLIONciiiiie ettt e e e e e st e e e s snse e e e e enbeeeeeaneeeeeesnnneeeeenees
LG 1= L= g o] (- OO TT
LT 1= o [a0 Lo o OO TSRO
6.2.1 Future expansion of the parameter datafield

6.2.2 Parameters of the header extension for MOT header mode and MOT directory mode...........cccoeveveeererrerecrernnnenns 29
6.22.1 MOT BaSiC tranSPOIt PArAIMELELScccceurerieiietieresiesseseesetsesessse e ssssssesessssssesessssssstessssssssessssssstessssssstesassssssessssssssessssnns
62211 CONLENENBIMIE........ecectieeeeeteiei ettt e bbbt b s et bbb bbb b e b b e b A b b e b e b e b e b e R e b b e b e R e b e b e b e b e b e b e b e b e b e b e b e b ebebebebebebebenebebebanas
6.22.1.2 T 1T I8 o1 OO
6.22.1.3 COMPIESSIONTYPE ...ttt se st e s bt s s st s s saetens

6.2.3 Parameters of the header extension for MOT directory mode only

6.23.1 MOT €aching SUPPOIt PArAMELET'Sceviiuiietrireeiessesese e tsesessse e sse st s s s se s ss s ss b b s s sssesssssssbesssssssbesesssansessssssssesassnnns
6.23.1.1 EXPIFAION ...ttt e n s naas

6.23.11.1 Absolute expiretimes

6.23.1.1.2 REEIVE BXPITETIMES ...t eaas

6.23.1.1.3 Disabling DEfAUITEXDITALIONc.cuvveieetriricece ettt bbb s bbb s st b s st et es et baeas
6.2.312 PErMILOULABLEIV €SI ONS.......ceeierereereeereeeseeeseaseseas e e st e esese s s s s e s e b e e s eesebeese b eea e b s reb s seb s et e st sennsas
6.23.1.3 UniqueBodyVersion.............

6.23.14 Prionity ..o

6.2.315 RetransmissionDistance

6.2.3.2 MOT conditional GCCESS PArAMELEL'Sc.cccuiietriricieereeie et s e st b s s besss s be b s es s ssbebes s anbesessasbetsnas

ETSI

4 draft EN 301 234 V2.1.1 (2004-08-12)

6.232.1 L@7 N 1y o FE OO
6.23.2.2 CAReplacementObject....
6.2.3.3 VL@ 1 I o o) T =T (=g 1] o= o o TP
6.233.1 PrOFITESUDSELcvcvicicieeeeee ettt e bbb
6.24 Coding of parameters............
6.24.1 Coding of time parameters....
6.3 Listof al MOT parametersin the MOT header extension

7 MOT tranNSPOM IMOOESeuiiieieii e e e e ettt e e e e e e e e e e e e e e e s e s e e e e e e aeesesssnaeaeeeeaeeesasanssreneeeaaeseaans
71 MOT NEAOEY MOE.......oeceiecereeirtieieieie sttt bbb bbb bbb e bbb bbbt
711 NEW OLJECE / ODJECE UPUALE........ceeeeeeeeeeceete sttt sttt st es s st s e an st s nns
712 Management of Transportlds

713 Updating header information / triggering ODJECES.........cccciirieinirirseresese sttt sessse s ssssessssssessssnns
472 Y/ (O B o (1 (= (0 VA 1 1o (= TP
721 INEFOAUCTTON ...ttt

722 Assembly of MOT bodies and MOT directoryccoeovveveererecennns

723 MOT direCtory COUINGccoeeverrirereeererisesesess e sssssesssssssessesssssesssens

724 List of all MOT parametersin the MOT directory extension

7241 SortedHeaderInformationcocecereeirecineeeeneseneiseseeseseseeeseieeseeeenas

7242 DefaultPermitOutdatedV ersions

7243 == 0T 0] = 1o TP

725 Segment size of the MOT directory
726 I dentification of the MOT directory

727 Use Of the MOT AITECLONY MOTE. ..ottt ettt es s st esnansesasnnis
7271 SegMENt FECEPLION OFUEYciecveteeeetetree ettt sttt a e e e s s s ee bt se et et ee e e s et e e st tens
7272 Serviceacquisition

T.27.3 VEISION CONIOL.....oiuieiiiiecitecireteie ettt b bbb e b bbbttt
A £ T AN N oo 1 Fo g o I =1 o) i o TR
7275 Prioritising objects within the data carousel

7276 Managing updates to the data CarOUSEL...........coiceircce et
7277 MOT decoder behaviour in case no dataisreceived for aloNg time ... 4
728 MOT dirECLOrY COMPIESSION.....uvuvereeeesceeteesessstetsssssssessesssssessssssssssessssssessssssssesessssssssessssssssessssssssessssssssesasssssesssssssasssssnes 45
8 1@ I 0 o (o 7= [AR TPRR 46
81 MOT caching support (MOT direCtory MOOE ONIY)......c.curuurureurireereneirereereeeseeereeeeseeeesseeesse st seas st sess s sesss s ssasesssessenas 46
811 Object reassembly

812 (@] 0] o Y= T [YOOV
8121 MOT eXPIre tiME NANAIINGcecvieeeeereeer ettt a b ees s bbbt nt s
8122 Unique MOT body version

8123 Temporarily using outdated MOT DOIESc.ocurureururierireerireirereireeisee ettt sea s seas s ses e s es e 51
813 (@] 0] ok g =T T=To 1= 0= | OOV 53
Annex A (normative): Comparing CONENNEIMIES.ueeiiuriieeiiiiieeesiieeeeesrier e e e eeesssneeeeesneeeeeennees 4
Annex B (informative): User gpplication definitions and MOTcooiiiiiiiiiiiieeiiee e 55
Annex C (informative): Model of an MOT decoder and itS interfaces...........oooccvvveeeei e, 57
C.l INEEWOIK TBVEL ...ttt bbb bbbt bbbttt
C2 MSC Datagroup level

C3 Segmentation and ODJECE IEVEL ...ttt st a ettt
C31 General description Of the MOT AECOUEN..........ccocurirercerece ettt s e es s snses
C32 The reassembly UNit ...

C321 MOT directory MOCE........cccovveeeeinrreieieesenssesesesssssesesssssssssssssesssssssassens

C.322 MOT header MOE........couuueunieeeniireeireeireeirees e

C323 Segmentation of MOT BOAI€S........ccoveeerreeeerrrieee s

C33 The object management UNitcccceveveeeereneeessese s

C331 MOT directory MOCE........cccovveeeeerrerieeerrensessesesssetesessssssssssssessssssssesens

C.332 MOT header MOE........coouueunieeeniireiirieiree e sssesass

C34 Advanced MOT reasSEMbIY UNITScccccriiiceieceeisesse st e st s s se st et es s s s sss s s snns
C34.1 Collecting MOT body segments whose Transportld is not described in the MOT directoryccoceeveverenne. 62
C3411 Start-up of the MOT direCtory Mode AECOUE ..ot 63

ETSI

5 draft EN 301 234 V2.1.1 (2004-08-12)

C34.12 UpPdateS tO the MOT GITECLONY ...cveeereeieiiecerie st sessss e s s e sss e a e s s s s e st ssssesnsessssssnsnssesesssnseens 63
C34.13 Collecting MOT DOAY SEOMIENESovvvreeererereeiresiseeesesesseeesesssssessesessssssessssssssesssssesssssssssssssssssessssesssssesssssssssessssseseens 64
C342 MOT caching support: relative expire times (MOT parameters Expiration and DefaultExpiration)............c......... 65

C343 Acquiring both compressed and uncompressed MOT directories
C35 Advanced MOT object management

C.351 MOT AIFECLONY MOUE......cucuririrereeerireseeeressssesesesessesssesesssesesessssssesessssssssessssssssesssssessesssssesssssssessssssnsessssssssesassssssessssssssesens
C3511 Support of MOT parameters DefaultPermitOutdatedV ersions and PermitOutdatedV ersions.............cocveen.. 70
(O U L= g o] [T o= o a1 =,V T 72
Annex D (informative): MOT decoding in MOT directory mode (example).........ccccvveeeeeiiiiciiiieeeee e, 73
Annex E (informative): Example for evaluation of relative expire times (MOT parameters Expiration and

(D2 o T o 17 (o 1) TSRO PR 74
Annex F (informative): Managing changes to the MOT data CarOUSEL............cocveeriieiiieeiiiee e 76
L T 0 I o TP 76
2 0 V7= (010 =] o] o 7= o O 76
om0 78

ETSI

6 draft EN 301 234 V2.1.1 (2004-08-12)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI membersand non-members, and can be found in
SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, |PRs notified to ETSl in respect of
ETS standards’, which is available free of charge from the ETSI Secretariat. Latest updates are available on the ETS
Web server (http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given asto the existence of other |PRs not referenced in SR 000 314 (or the updates on the ETSI Web server)
which are, or may be, or may become, essential to the present document.

Foreword

This European Standard (Telecommunications series) has been produced by the Joint Technical Committee (JTC)
Broadcast of the European Broadcasting Union (EBU), Comité Européen de Normalisation EL ECtrotechnique (CENELEC)
and the European Telecommunications Standards Institute (ETSI).

NOTE 1. The EBU/ETSI JTC Broadcast was established in 1990 to co-ordinate the drafting of standardsin the
specific field of broadcasting and related fields. Since 1995 the JTC Broadcast became atripartite body by
including in the Memorandum of Understanding also CENEL EC, which isresponsible for the
standardization of radio and television receivers. The EBU is a professional association of broadcasting
organizations whose work includes the co-ordination of its members activitiesin the technical, legal,
programme-making and programme-exchange domains. The EBU has active membersin about 60 countries
in the European broadcasting area; its headquartersisin Geneva.

European Broadcasting Union
CH-1218 GRAND SACONNEX (Geneva)
Switzerland

Tel: +41227172111

Fax: +41227172481

The DAB system isanovel sound broadcasting system intended to supersede the existing anal ogue amplitude and
frequency modulation systems. It isarugged, yet highly spectrum and power efficient sound and data broadcasting
system. It has been designed for terrestrial and satellite as well as for hybrid and mixed delivery. The DAB system has
been publicly demonstrated on a number of occasions during its development. It has been subject to extensive field tests
and computer simulationsin Europe and elsewhere. In 1995, the European DAB forum (EuroDab) was established to
pursue the introduction of DAB servicesin a concerted manner world-wide, and it became the World DAB forum (World
DAB) in 1997.

NOTE2 DAB isaregistered trademark owned by one of the Eureka 147 partners.

National transposition dates

Date of adoption of this EN: 29 January 1999
Date of |atest announcement of this EN (doa): 30 April 1999
Date of latest publication of new National Standard

or endorsement of this EN (dop/e): 31 October 1999
Date of withdrawal of any conflicting National Standard (dow): 31 October 1999

ETSI

7 draft EN 301 234 V2.1.1 (2004-08-12)

Foreword to V.2.1.1

The present document is acomplete revision of V.1.2.1. It does not change the former MOT specifications but triesto
give amuch more extensive and understandable description of what MOT is, how it works and how an MOT decoder
can be implemented. The present document concentrates on describing the transport related issues; all user application
specific issueswill now be handled by the user applications specifications.

MOT considersitself the multimediatransport protocol that provides the necessary toolsto carry al kind of multimedia
data. It isthe user application to decide which of the tools provided by MOT it uses and the user applications might also
extend or restrict some functionality that is described in the present document.

Some general and transport related MOT parameters (M meTy pe, CA related parameters, Conpr essi onType,
Profi | eSubset) wereremoved from the MOT broadcast web site specification [33] and added to the present
document.

User application specific parameters (Tr i gger Ti me, Label) are no longer explained in the present document and will
be described in user application specifications (MOT broadcast website [33]; MOT Slide Show [32]).

A clear indication of the differences between MOT header mode and MOT directory modeis given.

Backwards compatibl e extensions reduce the footprint of the MOT decoder and permit mu ch better user behaviour
during changes to adata carousel. MOT directory compression permits better use of the broadcast channel.

A detailed description of amodel of an MOT decoder and itsinterfacesis given in annex C. This should help
implementing afully standard compliant and efficient MOT decoder. Additional sub clauses describe features that an
advanced MOT decoder should use to further improve the performance of the MOT decoder and to enhance the user
experience.

ETSI

8 draft EN 301 234 V2.1.1 (2004-08-12)

1 Scope

The present document specifies atransmission protocol, which allows to broadcast various kinds of data using the
Digital Audio Broadcasting (DAB) system. It istailored to the needs of Multimedia services and the specific constraints
given by the broadcasting characteristics of the DAB system. After reception this data can be processed and presented
to the user.

The present document defines the transport specific encoding for data types not specified in EN 300 401 [1] according to
the transport mechanisms provided by DAB. It allowsaflexible utilization of the data channelsincorporated in the DAB
system, as well as methods to manage and maintain areliable transmission in a uni-directional broadcast environment.
Provisions are also made for the creation and presentation of advanced Multimedia services using formats such as
Hyper Text Markup Language (HTML) (see RFC 1866 [3]) or Multimedia and Hypermedia information coding Experts
Group (MHEG) (see ISO/IEC CD 13522 [4]).

The present document describes the core transport protocol. Subsequent parts or revisions of the present document will
describe backwards compatibl e extensions.

Aspects related to the further decoding and processing of the data objects carried are outside the scope of the present
document. Hardware implementation considerations are not covered.

2 References

The following documents contain provisions which, through reference in thistext, constitute provisions of the present
document.

References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

For a specific reference, subsequent revisions do not apply.
For anon-specific reference, the latest version applies.

A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same

number.

1 ETSI EN 300 401: "Radio broadcasting systems; Digital Audio Broadcasting (DAB) to mobile,
portable and fixed receivers".

2] Sun Microsystems (1994, 1995): "The Java Language: A White Paper". Called "Java" in the present
document.

[3] RFC 1866 (November 1995): "Hyper Text Markup Language (HTML) Specification-2.0", T. Berners-
Lee, D. Connolly; MIT/LCS onwards.

[4] ISO/IEC CD 13522: "Information Technology; Coding of Multimedia and Hypermedia Information".

[9] 1SO DIS 10918: "Digital Compression and Coding of Continuous-tone Still Images"*, Joint
Photographers Experts Group (JPEG).

[6] 1S0O-8859-1 (1987): "International Standard; Information Processing; 8-bit Single-Byte Coded
Graphic Character Sets; Part 1: Latin aphabet No. 1".

[7 1S0O-8859-2 (1987): "Information Processing; 8-bit single-byte coded graphic character sets; Part 2:
Latin alphabet No. 2".

[8] RFC 1521 (September 1993): "MIME (Multipurpose Internet Mail Extensions)
Part One: Mechanisms for Specifying and Describing the Format of Internet Message Bodies",
N. Borenstein, N. Freed.

9 RFC 1945 (May 1996): "Hypertext Transfer Protocol — HTTP/1.0", T. Berners-Lee, R. Fielding, H.

Nielsen.

ETSI

[10]

[11]

[12]

[13]

[14]
[15]
[16]

[17]
[18]
[19]

[20]

[21]

[22]
[23]
[24]
[25]

[26]

[27)

[28]

[29]
[30]
[31]

[32]

[33]

[34]

9 draft EN 301 234 V2.1.1 (2004-08-12)
ISO/IEC 646 (1991): "Information Technology; 1SO 7-bit coded character set for information
interchange".

© CompuServe, Incorporated (June 15, 1987): "GIF ™, Graphics Interchange Format ™: A standard
defining a mechanism for the storage and transmission of raster-based graphicsinformation".

BMP: "Device-independent bitmap format used as default graphics file format for Microsoft
Windows".

ISONEC 11172-3 (1993): "Information technology; Coding of moving pictures and associated audio
for digital storage mediaat up to about 1,5 Mbit/s; Part 3: Audio”.

ISO/IEC 13818-3 (1994): " Generic coding of moving pictures and associated audio - Audio part".
ITU-T Recommendation G.711: "Pulse Code Modulation (PCM) of voice frequencies'.

Apple Computer, Incorporated: "Audio Interchange File Format (AIFF): A Standard for Samples
Sound Files".

Sony: "Adaptive Transform Acoustic Coding".
Sony: "Adaptive Transform Acoustic Coding I1".
ISO/IEC 14496-3: "Very low bitrate audio-visual coding; Part 3: Audio”.

ISO/IEC 11172-2 (1993): "Information technology; Coding of moving pictures and associated audio
for digital storage mediaat up to about 1,5 Mbit/s; Part 2: Video".

ISO/IEC 13818-2 (November 1994): "Generic coding of moving pictures and associated audio -
Video part”. It isalso standardized by ITU-T as Recommendation H.262.

ISO/IEC 14496-2: "Very Low Bitrate Audio-Visual Coding".
ITU-T Recommendation H.263: "Video coding for low bit rate communication”.
SO 7498 (1984): "Open Systems Interconnection (OSl) Basic Reference Model".

EN 50067: " Specification of the Radio Data System (RDS) for VHF/FM sound broadcasting in the
frequency range from 87,5 MHz to 108,0 MHZ".

ISO/IEC IS 15948: "Information technology - Computer graphics and image processing - Portable
Network Graphics (PNG): Functional specification”.

ISO/IEC 10646-1 “Information technology -- Universal Multiple - Octet Coded Character Set (UCS) -
- Part 1: Architecture and Basic Multilingual Plane”

ISO/IEC 10646-2 “Information technology -- Universal Multiple - Octet Coded Character Set (UCS) -
- Part 2: Supplementary Planes’

IETF RFC 2045 to 2049 (1996): "Multipurpose Internet Mail Extensions (MIME)".
IETF RFC 1950 (1996): "ZLIB Compressed Data Format Specification version 3.3".
IETF RFC 1952 (1996): "GZIP file format specification version 4.3".

ETSI TS 101 499: “Digital Audio Broadcasting (DAB); MOT Slide Show; User Application
Specification”

ETSI TS101498-1: “Digital Audio Broadcasting (DAB); Broadcast website; Part 1: User application
specification”

ETSI TS 101 756: "Digital Audio Broadcasting (DAB): Registered Tables"

ETSI TSxxx xxx: "New CA document (former chapters 9 of EN 300 401)"

ETSI

10 draft EN 301 234 V2.1.1 (2004-08-12)

[36] ETS TR 101 496-2 "Digital Audio Broadcasting (DAB); Guidelines and rules for implementation and
operation; Part 2: System features"

ETSI

11 draft EN 301 234 V2.1.1 (2004-08-12)

3 Definitions, abbreviations and maintaining tables of
registered values

3.1 Definitions

For the purposes of the present document, the following definitions apply:

byte ordering: All numeric values using more than one byte have to be coded in Big Endian Format (most significant
bytefirst). In all schematics the bits are ordered with the most significant bit of abyte ("b7") at the left end and least
significant bit ("b0") at the right end of the drawing.

CA (Conditional Access): A mechanism by which user access to service components can be restricted.

content provider: Provides data for a user application instance. It is his responsibility to provide the data according to
the user application standard and to transmit it according to the transport protocol used by the user application. The
provided datais transmitted in a data channel of aDAB data or programme service.

DAB receiver: The Multimedia Object Transfer (MOT) specific definition of a DAB receiver includesdecoding of the
DAB signal and resolving the multiplex structure of the main service channel.

data carousel: A datacarousel is adelivery system that allows the broadcast component of a user application to present
aset of distinct objects to a user application decoder by cyclically repeating the contents of the data carousel. For some
user applications the data carousel may complete only afew or asingle cycle.

data channels: The data channelsin DAB (packet mode, X-PAD) provide the functionality on the transport layer in order
to convey the objects.

data decoder: The data decoder processes the MOT data stream and applies both packet mode/X-PAD specific decoding
and then MOT decoding.

directory core: The directory core contains basic information describing the data carousel (e.g., number of objects, data
carousel period). The directory core does not describe individual objects.

directory extension: The directory extension contains additional information about the data carousel. The directory
extension does not describe individual objects.

ensemble: The transmitted signal, comprising a set of regularly and closely-spaced orthogonal carriers. The ensembleis
the entity which isreceived and processed. In general, it contains programme and data services.

FIC (Fast Information Channél): A part of the transmission frame, comprising the Fast Information Blocks (FIB), which
contains the multiplex configuration information together with optional service information and data service components.

header core: The header core contains information about the size and the content type of the object, so that the receiver
can determine whether it has system resources to decode and present the object or not.

header extension: The header extension includes additional information about the object.

header information: The header information consists of the header core and the header extension and describes one
MOT body. The header information can be sent in an MOT header (the MOT header describes one single MOT body) or
an MOT directory (the MOT directory describesall MOT bodies within the data carousel).

MOT body: The MOT body carries any kind of data of finite length. The MOT body is described by the MOT header
information.

MOT data service: A data service comprisesinformation that isintended to be presented to a user, i.e. text, pictures,
video or audio sequences. A user application decoder isrequired to gain access to the data. This might be aviewer
which decodes text and pictures and displays them on ascreen. Interms of MOT adata services consists of one or an
ordered collection of several objects. It is not in the scope of MOT to deal with the content of the object, but to carry
information to support both presentation and handling of these objects.

ETSI

12 draft EN 301 234 V2.1.1 (2004-08-12)

MOT directory: Within a data carousel the MOT directory contains a complete description of the content of the data
carousel. It includesthe MOT header information of all objects within the data carousel.

MOT entity: A single MOT body, asingle MOT directory or asingle MOT header.
MOT header: ThisMOT entity contains the header information that describes one single MOT body.

MOT object: An MOT object isused to transfer datain DAB. The object consists of header information and an MOT
body carrying the payload.

MOT parameter: An MOT parameter provides information about an MOT object or about the data carousel as awhole.
MOT parameters describing one single MOT object are carried in the header information of the MOT object. MOT
parameters describing a data carousel are only availablein MOT directory mode and they are carried in the MOT
directory extension.

MOT parameters can be transport specific (MOT transport parameters) or user application specific (MOT user
application specific parameters). The present document definestransport specific MOT parameters. The user application
specific MOT parameters are defined in user application standards.

MOT segment: All MOT entities are splitinto MOT segments for transmission. The MOT segments are then mapped to
M SC data groups and inserted into a DAB packet mode subchannel or into the X-PAD channel of an audio service
component.

MOT gream: The MOT stream comprises all data for one user application instance. One stream of MOT objectsis
transferred in an individual service component (packet mode) or as part of the X-PAD of an audio service component.
Several MOT entities might be conveyed in parallel by interleaving.

Note that within one packet mode subchannel or one X-PAD channel there might be multiple MOT streams carried in
pardlel.

MSC (Main Service Channd): A channel which occupiesthe major part of the transmission frame and which carries all
the digital audio service components, together with possible supporting and additional data service components.

M SC data group: A package of datafor carrying one segment of an MOT object. The MSC data group can be carried in a
packet mode subchannel or in the Extended Programme Associated Data (X-PAD) part of an audio subchannel.

packet mode: The mode of data transmission in which data are carried in addressable blocks called packets. Packets are
used to convey M SC data groups within a sub-channel. The packet mode carries the load in packets of a certain size,
separating different streams of packets by specific addresses. Error detection and repetition are already covered by
packet mode and thus allow areliable and flexible data transmission.

PAD (Programme Associated Data): Information that isrelated to the audio datain terms of content and
synchronization. The PAD field islocated at the end of the DAB audio frame.

service: The user-sel ectable output which can be either a programme service or adata service.

service component: A part of a service which carries either audio (including PAD) or data. The service components of a
given service are linked together by the Multiplex Configuration Information (MCI). Each service component is carried
either in asub-channel or in the Fast Information Data Channel (FIDC).

service label: Alphanumeric characters associated with a particular service and intended for display in areceiver.

Transportld: This 16-bit field shall uniquely identify one data object (body and header information) from a stream of
such objects. It shall be used to indicate the object to which the information carried in the segment belongs or relates. It
isvalid only during transport of the object.

ETSI

13 draft EN 301 234 V2.1.1 (2004-08-12)

User application: Data application defined in a separate standard and fed with datavia DAB. A user application using
MOT can be carried in a packet mode subchannel or in X-PAD. The stream of MOT objects belonging to a user
application instanceiscalled an "MOT stream", see above.

X-PAD (eXtended Programme Associated Data): The extended part of the PAD carried towards the end of the DAB
audio frame, immediately before the scale factor Cyclic Redundancy Check (CRC). It is used to transport information
together with an audio stream which isrelated or synchronized to the X-PAD. No provisionsfor error detection are
included in X-PAD so that additional protocolsarerequired for some user applications.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AlFF Audio Interchange File Format
ASCII American Standard Code for Information Interchange
ATRAC Adaptive Transform Acoustic Coding
BMP Windows Bitmap
CA Conditional Access
CRC Cyclic Redundancy Check
DAB Digital Audio Broadcasting
ECM Entitlement Checking Message (Conditional Access related)
EMM Entitlement Management Message (Conditional Access related)
ETS European Telecommunication Standard
FFT Fast Fourier Transform
FIB Fast Information Block
FIC Fast Information Channel
FIDC Fast Information Data Channel
GIF Graphics I nterchange Format
HF High Frequency
HTML Hyper Text Markup Language
HTTP Hyper Text Transfer Protocol
JFIF JPEG File Interchange Format
JPEG Joint Photographic Experts Group
MCI Multiplex Configuration Information
MHEG Multimedia and Hypermediainformation coding Experts Group
MIME Multipurpose Internet Mail Extensions
MJID Modified Julian Date
MOT Multimedia Object Transfer
MPEG Moving Pictures Expert Group
MSC Main Service Channel
PAD Programme Associated Data
PCM Pulse Code Modulation
PLI Parameter L ength Indicator
Rfa Reserved for future addition; see[36] (Guidelines DAB)
Rfu Reserved for future use; see [36]
uTC Universal Time Co-ordinated
X-PAD Extended Programme Associated Data
3.3 Maintaining tables of registered values

The present document contains identifier fields that require values to be registered. Registered value lists associated
with data broadcasting specifications for DAB are maintained by the WorldDAB Information and Registration Centre
(WIRC). Since thelists and tables contained within the present document might be outdated, please refer to the most
recent versions of TS 101 756 [34]. The present document also describes the procedures for registering valuesin an
existing table as well as registering new tables.

ETSI

14 draft EN 301 234 V2.1.1 (2004-08-12)

4 General description of the MOT protocol

4.1 Requirements of Multimedia services

Multimediain general can be referred to as information and its presentationin various formats (visible, audible, etc.) and
forms (text, pictures, video, etc.). The material is often structured and packaged into a number of containers or fileswhich
shall be either completely available before the presentation or are delivered on request of the user.

Multimedia services require to control the presentation (e.g. the arrangement of visible information on a screen) and
therefore direct access to both hardware and software resources of the receiver/terminal is essential. The appropriate
time shall also be considered for the presentation. Thusit is required to synchronize the various elements (e.g. video
together with the sound), i.e. some kind of aruntime environment is necessary.

4.2 Problems MOT solves

MOT isatransport protocol for the transmission of Multimedia content in broadcast channels to various receiver types
with Multimedia capabilities.

Various possibilities for transmitting information are incorporated into a common transport mechanism for different DAB
data channels, so that the access to Multimedia content is unified within the DAB system.

MOT ensures interoperability between:
different data services and user application types;
different receiver device types and targets;
equipment from different manufacturers.

Each data service has an associated user application specification, and that specification includes the transport
mechanisms for the data content. If the user application uses files of information then these are best transported using
the MOT protocol layered onto the DAB transport mechanisms for packet mode and X-PAD.

The MOT protocol allows objects of afinite length from an information source, i.e. the content/ service provider to be
conveyed to adestination, i.e. the terminal, as shown in figure 1, where in terms of MOT:

the Content/Service provider iscapable of processing varioustypes of Multimedia content (e.g. picture and text files)
in an appropriate way, so that this datais compliant with the MOT specification and can
befed into aDAB Ensemble multiplexer;

the Terminal isfed from an MOT decoder capable of processing the multimedia content of aDAB
Ensemble in an appropriate way, so that it is:
- decoded and presented to the user; or
- forwarded to afollowing entity, which then processes the content.

The definition of interfaces between the different entitiesis not within the scope of the MOT specification.

PAD Audio

Content/ encoder -l encoder | DAB :
Service || MOT ensemble | . | DABensemble Lj MOT data | Termina
provider | | encoder multiplexer demultiplexer decoder
Packet mode Packet P
encoder multiplexer

Figure 1: Overview of MOT encoding and decoding
MOT interconnects the closed and well-defined world of DAB to the openworld of Multimedia services withitslarge

variety of systems and data formats. It comprises functionality to carry information to the terminal, and ultimately to the
user.

ETSI

15 draft EN 301 234 V2.1.1 (2004-08-12)

In addition to the Multimediatransport the MOT protocol also supports handling of the Multimedia objects (e.g., object
identification or object management on receiver side) and provides additional information that can support a user
application.

MOT does not cover issues specific to runtime environments to control Multimedia services, i.e. the interpretation and
execution of object code, pseudo code or script languages. This shall be included in the particular user application.

The structure of the Multimedia content is user application specific and not subject to standardization within the present
document.

4.3 Receiver architecture reference model

An example decoding process for MOT objectsis shown in figure 2 (data flow top-down).

ETS 300 401
HF Part
7
FFT, Demux, Q
Channel Decoder g
ol
£
5
PAD stripping §
XPAD subfield Packet =
PAD Decoder Packet Mode Decoder
Data Group Data Group
MOT
Object data E Additional information
Audio Application
c
8
g
i] §
Q
0
o
& & Multimedia o

speaker terminal

Figure 2: Example scheme for the data decoding part of a DAB receiver

Parts within the grey background (HF part, FFT/demux/channel decoder, PAD stripping, PAD decoder, packet mode
decoder and audio decoder) are defined in EN 300 401 [1]).

Interfacetothe MOT decoder: Communication between PAD/packet mode decoder and MOT decoder uses complete
M SC data groups (see EN 300 401 [1]). The session header of a data group cannot be omitted, although it is optional in
the DAB specification, sinceit carries the Transportld, which is necessary to reassemble the MOT objects.

Additional information: Additional information is carried in the MOT header information. It is decoded by the MOT
decoder and forwarded to the user application decoder.

Object data: Object dataiscarried inthe MOT body.

ETSI

16 draft EN 301 234 V2.1.1 (2004-08-12)

5 Structural description

This clause describes the different operations needed in order to transmit afile/ object or aset of files/ objects using the
MOQOT protocol.

MOT provides two modes of operation—MOT directory mode and MOT header mode. The MOT mode determines how
management datais carried.

The M OT directory mode permits the content provider to manage a set of files/ objects on receiver side (file/
object addition, deletion and modification). In MOT directory mode all management data from all broadcast files/
objectsis combined in one single MOT entity, the"MOT directory”. The MOT directory issent "in parallel” to
thefiles/ objectsit describes.

MOT header mode can be used for user applications that use one singlefile/ object at atime. In MOT header
mode the management data of the one and only MOT object is contained in the MOT entity "MOT header".
The MOT header is sent in advance of thefile/ object it describes.

The user application specification defines the MOT transport mode that shall be used to convey the user application
data.

Thefirst step in the transmission processis to identify the file and to create the header information. The header
information contains both purefile identification and additional information. Thefileisreferred to asthe MOT body. At
this stage the header information and body correspond to an MOT object.

The header information is separated from the body during transportation in order to:

- havethe possibility to repeat the header information several times before and during the transmission of the body
(which is useful when transmitting long objects);

- send the header information in advance in order to give the receiver the opportunity to "be prepared in advance"
to the datathat is going to be received;

- send the header information unscrambled when the body is scrambl ed.

The dataflow at the transmitter sideis shown in figure 3. The different datafiles that should be transferred viaDAB are
first processed in the MOT encoder, producing MOT objects. Then the PAD or packet mode specific coding is applied.
For all the subsequent stages see EN 300 401 [1]. A packet mode sub-channel may contain a number of service
components (some of them MOT based), separated by the packet address. An X-PAD channel may carry a number of
user applications (some of them MOT based) in parallel, separated by the X-PAD application type values. Finally the
sub-channels (stream mode audio, stream mode data, packet mode) are multiplexed into the DAB ensemble.

i DAB
audio ™ audio encoder|
data [‘ PAD
MOT "] pAD encoder
encoder ™ DAB-
data |7 multiplexer
pacléet
data g MOT packet 5| packet rggtae
encoder T mode B multi- ——
data > encodef plexer

Figure 3: Data transfer in DAB using MOT — data flow

Figure 3 can be converted into alayered scheme indicating the steps, which have to be performed (see figure 4).

ETSI

17 draft EN 301 234 V2.1.1 (2004-08-12)

Tx (content provider side) Rx (receiver side)

additional object data additional object data

informationil (files) informationTT (files)
MOT layer

MOT encoding MOT decoding

A

segments / data groups

packet mode / PAD transport layer packet mode / PAD
encoding decoding
packets / X-PAD data subfields T
DAB multiplexing network layer DAB demultiplexing

' !

Figure 4: Data transfer in DAB using MOT — protocol layers

The coding procedure starts at the object level, which stands for the files (including some management information) to
be transferred and processed further.

MOT encoding generates the complete MOT objects including the additional header information and transforms these
entities (MOT body, MOT directory or MOT header) into segments of an appropriate size for the lower protocol layers.

Packet mode/PAD encoding transforms these segments into M SC data groups and further into packets, which fit into the
container provided by DAB (X-PAD data subfields, packet mode packets).

DAB encoding and multiplexing handles the output of the PAD/packet mode encoder and supplies either acomplete
packet mode sub-channédl or fillsthe X-PAD fields of the audio stream.

5.1 Segmentation of MOT entities

The lowest common structure for the two different DAB transport mechanisms for which MOT is defined (Packet Mode
and X-PAD) is M SC data groups. This data group structure is also mapped to X-PAD transport for compatibility
reasons. It istherefore the goal of the segmentation on M OT level to map the MOT entitiesinto MSC data groups.

The header information and body are transported in different MOT entities and therefore the segmentation will apply
independently on header information and body. MOT entitieswill be split up in segments with equal size. Only the |ast
segment may have asmaller size (to carry the remaining bytes of the MOT entity). Every MOT entity (e.g. every MOT
body) can use adifferent segmentation size.

ETSI

18 draft EN 301 234 V2.1.1 (2004-08-12)

MOT entity
segment 1 segment 2 segmentn
O pid > —>
Segment Segment Remaining
size X size X bytes of
segment
size £X

Figure 5: Segmentation of MOT enties
To elaborate a proper segmentation strategy the following considerations should be taken into account:
minimize the overhead;
improve the robustness of the transmission;
facilitate the segment management on MOT decoder side.

The Segmentation header (see sub clause 5.1.1) is attached to all segments and then every segment of the above-
mentioned MOT entities (MOT body, MOT directory, MOT header) is mapped to an M SC data group with the
appropriate data group type (see sub clauses5.1.2, 5.1.3 and 5.1.4) for later transport in one or more packets or X-PAD
data subfields.

Every MOT decoder shall ignore MSC data groups with data group types not supported by thisMOT decoder. This
behaviour is required to permit future extensions (that might use additional data group types) of the MOT protocol.

A data group shall contain adata group header, a Session header, a data group datafield and an optional data group
CRC. Thestructure of adatagroup isshownin EN 300 401 [1].

The user access field in the Session header (see EN 300401 [1]) isnot optional if MOT segments are carried in MSC data
groups. It cannot be omitted, since this field contains the Transportld, necessary for MOT object transfer. The use of
the MSC data group CRC is strongly recommended.

Thelink between header information in an MOT header (data group type 3) or MOT directory (data group type 6 or 7)
and its MOT body (data groups type 4 or 5) is established by the Transportid.

In MOT header mode the Transportld of the MOT body isthe same as the Transportld of itsMOT header.

In MOT directory mode the Transportld of the MOT body is attached to the header information for this MOT object
inside the MOT directory. If scrambled MOT objects are used, the CA messages related to this object also have the same
Transportld.

Aslong asthe Transportld of an MOT entity is not changed, the segmentation size of thisMOT entity shall remain the
same.

Figure 6 shows all necessary steps to split MOT entities and map them to M SC data groups, see clause 5.3.3in EN 300
401[1]

ETSI

19 draft EN 301 234 V2.1.1 (2004-08-12)

MOT header / MOT directory / MOT body

segment 1 segment 2 segment n

/

Segmentatior] segment
eader
Data group] Session Data group MSC data
header header data field group CRC

Data Group Type 3,4, 5,6 0or 7

Figure 6: Segmentation of MOT header, MOT directory or MOT body

5.1.1 Segmentation header

The Segmentation header (seefigure 7) shall be attached to each segment of an MOT entity and contains information
about the size of the segment and the remaining repetitions of the entity.

3 bits 13 bits

RepetitionCount SegmentSize

bis bis bio bg
Figure 7: Segmentation header

RepetitionCount: This 3-hit field indicates, as an unsigned binary number, the remaining transmission repetitions for the
current entity — repetition on object level (if in MOT header mode, see figure 12) or repetition on entity level (if in MOT
directory mode, see figure 18). Exceptionally, the code "111" shall be used to signal that the repetition continues for an
undefined period (> 6 times).

SegmentSize: This 13-bit field, coded as an unsigned binary number, indicates the size of the segment datafield in
bytes. The maximum length which can be signalled is 8 189 bytes according to the limited total length of the MSC data
group datafield (8 191 bytes), so that both, the Segment and the Segmentation header fit into one MSC data group.

Note that some MOT decoders may ignore both parameters of the Segmentation header.

51.2 Segmentation of the MOT body

If conditional accesson MOT level isapplied, then scrambled MOT body segments shall be transported in MSC data
group type 5. In all other cases (no scrambling on MOT level or unscrambled MOT body segments) the segments of the
MOT body shall be transported in M SC data group type 4.

Segmentation is applied considering the size of the MOT body and the segmentation strategy.

5.1.3 Segmentation of the MOT directory

The segments of an uncompressed MOT directory shall be transported in MSC Data Group type 6. The segments of a
compressed MOT directory shall be transported in MSC Data Group type 7.

ETSI

20 draft EN 301 234 vV2.1.1 (2004-08-12)

Segmentation is applied considering the size of the MOT directory and the segmentation strategy.
The MOT directory is not scrambled if conditional accesson MOT level is applied.

Thelink between adirectory entry inside an MOT directory (data group type 6 or 7) and the MOT body is established by
the Transportld. The Transportld attached to the header information and its MOT body isthe same. If scrambled MOT
objects are used, the CA messages related to this object also have the same Transportid.

5.1.4 Segmentation of the MOT header

The segments of the MOT header shall be transported in MSC Data group type 3.

In order to enable easier access to the header information and to reduce the memory demand in the reassembly unit of
the MOT decoder, it is recommended to send the MOT header in one M SC data group (which is equivalent to no
segmentation).

Conditional accesson MOT level isnot possible for MOT header mode; therefore the MOT header is never scrambled
on MOT level.

5.2 Transporting MOT segments - network level
The coding of the data on network level is described in detail in EN 300 401 [1], therefore sub clauses 5.2.1 and 5.2.2 only

explain the actual mapping of the M SC data groups obtained on the transport layer into the packet mode packets or X-
PAD data subfields.

521 Packet mode

The MSC data groups containing MOT data are transmitted in one or more packets sharing the same packet address
(see EN 300401 [1]).

MSC Data Group

i< g
- Data Group Data Field
< g
Data Group | Session | Segmentation
Header Header Header Segment CRC
Packet) Packet Packet) Packet
header Packet data field CRC header Packet data field CRC

Figure 8: Relationship between a MSC data group and a sequence of packets
The command flag on packet level isused to identify conditional access data. The command flag is O for M SC data group
types 3, 4, 6 and 7 (MOT header, unscrambled MOT body, uncompressed MOT directory and compressed MOT

directory). The command flag is 1 for conditional access data carried with MSC data group type 1 and 5 (ECM/EMM data
and scrambled MOT body for conditional accesson MOT level).

5.2.2 X-PAD

The MSC data groups containing MOT data are transmitted in one or more X-PAD data subfields (see EN 300 401 [1])
using M SC data group structure.

ETSI

21 draft EN 301 234 V2.1.1 (2004-08-12)

MSC Data Group

i< |
Data Group Data Field >
Data Group Data Group | Session | Segmentation
Length Indicator Header Header Header Segment CRC
X-PAD Datg | X-PAD Datg | X-PAD Data| | X-PAD Data X-PAD Data
Subfield Subfield Subfield Subfield Subfield
Application Application Application Application Application
Type 1 Type 1 Type 12 or 14 Type 13 or 15 Type 13 or 15

Figure 9a: Example for transportation of MSC data groups in X-PAD data subfields
in case of short X-PAD

MSC Data Group

¢ bl
Data Group Data Field >
Data Group Data Group | Session | Segmentation
Length Indicator Header Header Header Segment CRC
X-PAD Data X-PAD Data| | X-PAD Data X-PAD Data|
Subfield Subfield Subfield Subfield
Application Application Application Application
Type 1 Type 12 or 14 Type 13 or 15 Type 13 or 15

Figure 9b: Example for transportation of MSC data groups in X-PAD data subfields
in case of variable size X-PAD

A complete specification of the transport signalling in X-PAD isgivenin EN 300 401 [1].

MOT transport in X-PAD uses at |east two X-PAD application types (in addition to the M SC data group length indicator
with X-PAD application type 1).

If conditional accesson MOT level isapplied then asecond pair of X-PAD application typesisused. Similar to the
command flag in packet mode the use of two pairs of X-PAD application typesis used to identify conditional access
data. Thefirst pair of X-PAD application typesis used for M SC data group types 3, 4, 6 and 7 (MOT header,
unscrambled MOT body, uncompressed MOT directory and compressed MOT directory). The second pair of X-PAD
application typesis used for conditional access data carried with M SC data group type 1 and 5 (ECM/EMM data and
scrambled MOT body).

In the former MOT specification the MOT protocol was limited to one single MOT based user application in X-PAD.
MOT in X-PAD was restricted to X-PAD application types 12/13 and 14/15 (conditional access data). According to the
current MOT specification, multiple MOT based user applications can be carried in X-PAD (using additional X-PAD
application type values).

MOT decoders limited to the former MOT specification can only decode user applicationsin X-PAD that use X-PAD
application types 12/13 or 14/15. For backwards compatibility it is recommended to use X-PAD application types 12/13
(and 14/15 if conditional accesson MOT level isapplied) for the primary MOT user application carried in X-PAD.

ETSI

22 draft EN 301 234 vV2.1.1 (2004-08-12)

5.3 Transmission Mechanisms

When transmitting datain aradio broadcast system, the content provider always has to take in consideration that the
terminal may miss data due to:

Thereceiver being switched off, out of signal or tuned to another service or ensemble.
Bad reception due to the conditions of the radio channel (bit errors).

Without an interaction channel the receiver does not have the possihility to actively demand repetition of lost data.
Therefore MOT uses some mechanisms, which permit datato be repeated and so allow the receiver several opportunities
to receive objects and to improve the reception probability:

Repetition on data group (MOT segment) level
Repetition on MOT object/ entity level

Repetition means that a data group or MOT object/ entity is broadcast again, with exactly the same content. The term
Retransmission means that an MOT object (identified by itsCont ent Nane) isbroadcast again, but possibly with an
updated content.

Reception errors may cause the receiver to fail in decoding the data, thereforeit is strongly recommended to use one or
more of the mechanisms explained below to improve the reception probability, although the use of these mechanisms
decreases the useful bit rate.

The following clauses detail the main differences and characteristics of the single object transmission (MOT header
mode) and multiple object transmission (MOT directory mode) mechanisms. For further details regarding MOT header
mode and MOT directory mode see clause 7.

5.3.1 Single object transmission (MOT header mode)

The single transmission scheme (see figure 10) is useful when only one object isvalid at atime, for examplein aslide
show.

Object A

Figure 10: Single object transmission

53.1.1 Repetition on object level

An object can be transmitted several times so that the receiver can replace MOT segments of an object, lost due to
reception errors, with the repetition of the same MOT segmentsiif they are received without reception errors. Repetition
on MOT object level issignalled in the MOT segmentation header (see sub clause 5.1.1). Figure 11 shows the repetition
method based on transmitting the entire object a number of times.

Repetition Last repetition

v Ay
AlAalala

Figure 11: Single object transmission with repetitions

Figure 12 explains how the segments of the object (consisting of MOT header ("H") and MOT body ('Body")) are repeated.

ETSI

23 draft EN 301 234 vV2.1.1 (2004-08-12)

MOT object H Body

segments HS1 BS1 BS2

repetition on HS1 | BS1 | BS2 | HS1 | BS1 | BS2
object level

Figure 12: Repetition on object level (example)

53.1.2 Repetition of MSC data groups / MOT segments

Segments of an object can be transmitted several times so that the receiver can replace those segments, lost due to
reception errors, with the repetition of the same object segments received without errors. Repetition on M SC data group
level issignalled in the MSC data group header (see[1]). Figure 13 shows the repetition method based on transmitting
every segment of an object (consisting of MOT header ("H") and MOT body (‘Body’) segments) a number of times.

MOT object H Body

segments HS1 BS1 BS2

repetition on HS1 | HS1 | BS1 | BS1 | BS2 | BS2
data groups
level

Figure 13: Repetition of MSC data groups / MOT segments (example)

5.3.1.3 Repeated transmission of header information (combined with repetition on object
level)

During the transmission of body segments (M SC data groupstype 4 or 5) of large objectsit can be useful to transmit the
complete header or part of the header information carried in MSC data groups type 3 (see figure 14) multipletimes. This
allows the data decoder to detect the object even if it has not received the start of the object transmission. Provided that
the object is repeated the data decoder can then compl ete the missing segments during the next repetition of the object.

ETSI

24 draft EN 301 234 V2.1.1 (2004-08-12)

File
Header Header Body Body Body
core extension Segment 1 | Segment 2 Segment n
Data Group Data Group Data Group Data Group Data Group Data Group Data Group
Data Group Data Group Data Group Data Group Data Group Data Group Data Group
Type 3 Type 3 Type 4 or 5 Type 4 or5 Type 3 Type 4 or5 Type 4 or5

additional insertion of Data Group with Type 3

Figure 14: Repeated transmission of header information

5.3.2 Multiple object transmissions (MOT directory mode)

Multiple object transmission (data carousel functionality) isintended for user applications that need to have several
objects available on the terminal at the sametime. An example for such a user application is a broadcast web site.

Each MOT body istransmitted several timesin acyclic manner with a cycle time between each transmission (seefigure
15). The cycle time between subsequent transmissions of an MOT body may vary.

A A A

cycle time

Y

Figure 15: Multiple object transmission

Within acycle (see figure 16), repetition on MSC datagroup (MOT segment) level (seefigure 17) or on MOT entity level
(seefigure 18) can be used to ensure the reception. Repetition on M SC data group level issignalled in the MSC data
group header (see[1]); repetition on MOT entity level issignalled in the MOT segmentation header (see sub clause
5.1.1). Inanew cycle the object is retransmitted. The content of the object can be the same or can be updated.

Repetition Retransmission
! J

Al A A A A A

cycle time

[

Figure 16: Multiple object transmission with repetitions

Figure 17 and 18 explain how MOT entities (MOT directory or MOT bodies) can be repeated.

ETSI

25 draft EN 301 234 V2.1.1 (2004-08-12)

MOT entity Entity

segments ES1 | ES2

repetition on ES1 | ES1 | ES1 | ES2 | ES2 | ES2
data group

level

Figure 17: Entity repetition on MSC data group level (example)

MOT entity Entity

segments ES1 | ES2

repetition on ES1 | ES2 | ES1 | ES2 | ES1 | ES2
entity level

Figure 18: MOT entity repetition on entity level (example)

The different objectsin the cyclic MOT stream are identified by their Cont ent Nanes. If in aretransmission the header

information, the body content or the SegmentSize of an object have been changed, the Transportld shall be changed. If
nothing is changed, the Transportld should remain the same.

It is recommended to transmit the most important MOT bodies (e.g. the HTML pages on the top of the hierarchy or the
most likely visited pages of abroadcast web site) more frequently than the others to improve the access to the service.
To broadcast some objects more frequently than othersinterleaving of MOT entitiesis used (see below).

5.3.2.1 Interleaving MOT entities in one MOT stream
Interleaving permits the transfer of data groups of different MOT bodies and/or the MOT directory in parallel.

With the MOT protocol it is possibleto transmit several MOT entities (i.e., MOT directory and MOT bodies) in parallel
in one single data channel (i.e., in one MOT stream). The different MOT entities are separated by their data group type
and their Transportld (see EN 300401 [1]). It isvery common to interleave multiple MOT bodies and in addition
interleave them with the MOT directory.

Interleaving can for instance be used to insert high priority objects (e.g., the MOT directory or an entry page of a
broadcast web site) into the MOT stream during the transmission of big objects with alongtransmission time.

ETSI

26 draft EN 301 234 V2.1.1 (2004-08-12)

MOT entity Z
I . MOT entity Y
— - MOT entity X
! N
o E 5 e
- i \
o i \
o ! ".
A v <
Data Group Data Group Data Group Data Group Data Group Data Group

Transport Id x

Transport Id y

Transport Id x

Transport Id z

Transport Id x

Transport Id y

Figure 19: Interleaving of MOT entities on MSC data group level

6 MOT header information

The MOT header information consists of two parts: The header core and the header extension. The header coreis a set
of four parameter fields that shall be specified, while the header extension is avariable length field that may contain an
arbitrary number of "parameters” to be associated with each object.

This clause appliesto both the MOT header mode and the MOT directory mode. It defines the general structure and
format of MOT parameters that describe an MOT object.

6.1 Header core

The header core contains information about the size and the content type of the object, so that the receiver can
determine whether it has system resources to decode and present the object or not.

The header corefieldsare BodySi ze, Header Si ze, Cont ent Type and Cont ent SubType. Thefirst two fields
indicate the length, in bytes, of the body and header information respectively. The Cont ent Type and

Cont ent SubType pair of fieldsis used to indicate the object type (i.e., the content type of the body), where that type
identifier istaken from an enumerated list.

The header core shall be coded as shown in figure 20.

9 bits
ContentSubType
bg bo

6 bits
ContentType
bg

13 bits
HeaderSize

28 bits
BodySize

bsg bog Doy bis big

Figure 20: Structure of the header core

BodySize: This 28-hit field, coded as an unsigned binary number, indicates the total size of the body in bytes.

If the body size signalled by this parameter does not correspond to the size of the reassembled MOT body, then the
MOT body shall be discarded.

Header Size: This 13-bit field, coded as an unsigned binary number, indicates the total size of the header informationin
bytes including the header core size of 7 bytes.

ContentType: This 6-hit field indicates the main category of the body's content. The interpretation of thisfield shall be
defined in TS 101 756 [34], table xx.

ContentSubType: This 9-bit field indicates the exact type of the body's content depending on the value of the field
ContentType. Theinterpretation of thisfield shall be defined in TS 101 756 [34], table xx.

ETSI

27 draft EN 301 234 V2.1.1 (2004-08-12)

In many user applications, thelist of Cont ent Type and Cont ent SubType may be sufficient to define all the
possible types of objects that may be used by the user application. However, since the enumerated list is necessarily
constrained to the set of typesthat have been registered, a user application may choose to use an alternative mechanism
to determine the object type, if needed, such as using the MOT parameter M neType (see sub clause 6.2.2.1.2).

Even if auser application does not use Cont ent Type and Cont ent SubTy pe to indicate the type of an object (e.g.,
because the user application usesthe MOT parameter M me Ty pe; see below), the fieldsCont ent Type and

Cont ent SubType shall correctly indicate the body's content type. If acorresponding value of the fields

Cont ent Type and Cont ent SubType isnot available in the enumerated list defined within TS 101 756 [34], table xx,
then both fields shall be set to 0 to indicate "general data/object transfer".

For the Cont ent Type 'application’ the body's content type identified by Cont ent Type/ Cont ent SubType
depends on the user application. It is possible that two user applications use the same value for Cont ent SubType
but assign atotally different meaning toit. If the Cont ent Type 'application’ is signalled, then the decoding of
Cont ent Type/ Cont ent SubType aways hasto take into account which user application provides the data.

6.2 Header extension

The header extension provides information that supports the handling and transport of the objects (e.g., object
identification or object management) and provides additional information for the user application decoder.

The header extension parameters describe several attributes of the object. Some of these parameters may occur more
than once as described separately for the different parameters.

The user application defineswhich MOT parameters are used when transporting this user application’'s data. The user
application may also restrict the permitted values for MOT parameters (e.g., the parameter Conpr essi onType might
permit multiple compressed data formats, but the user application might choose to permit just one single way to
compress data).

Note that in MOT directory mode the MOT directory contains all header information of all MOT objects within the data
carousel. The size of the MOT directory has a strong impact on its cycle time and the content provider should try to keep
the MOT directory as small as possible. Therefore the content provider should try to keep the header information of his
MOT objects as small as possible (i.e., by using short Cont ent Nanes).

The general structure of the header extension is shown in figures 21 and 22.

Parameter 0 Parameter 1 Parameter n

Figure 21: General structure of the header extension

Each parameter in the header extension consists of alength indicator, a parameter identifier and adatafield. The
parameter identifier determines how the datafield isto beinterpreted.

Every parameter of the MOT header extension shall be coded as shown in figure 22:

2 bits 6 bits
PLI:OO:| PLI | Paramld |

2 bits 6 bits 8 bits
PLI = 01: | PLI | Paramld | DataField |

2 bits 6 bits 32 bits
PLI = 10: | PLI | Paramld | DataField |

ETSI

28 draft EN 301 234 vV2.1.1 (2004-08-12)

2 bits 6 bits 1 bit 7 or 15 bits n’ 8 bits
PLI = 11: | PLI | Paramld Ext DataFieldLength Indicator 'n' | DataField

Figure 22: Structure of the header extension parameter
PLI (Parameter Length Indicator): This 2-bit field describes the total ength of the associated parameter. The following
definitions apply:
- 0 0 total parameter length = 1 byte; no DataField available;
- 0 1 total parameter length = 2 bytes, length of DataField is 1 byte;
- 1 0 total parameter length = 5 bytes; length of DataField is 4 bytes;

- 1 1 total parameter length depends on the DataFieldLength indicator (the maximum parameter length is
32 770 bytes).

Paramld (Parameter Identifier): This 6-bit field identifies the parameter. The coding is defined in table 2 at the end of
clause 6.

Ext (ExtensonFlag): This 1-bit field specifies the length of the DataFieldLength Indicator and is coded as follows:;
- 0:thetotal parameter length is derived from the next 7 bits;
- 1: thetotal parameter length is derived from the next 15 bits.

The ExtensionFlag is only present if the PLI field isset to "11".

DataFieldLength Indicator: Thisfield specifies as an unsigned binary number the length of the parameter's DataField in
bytes. The length of thisfield iseither 7 or 15 bits, depending on the setting of the ExtensionFlag.

The DataFieldLength Indicator isonly present if the PLI field isset to "11".
DataField: Thisfield contains the parameter dataand isonly present if the contents of the PLI field iseither 01, 10 or 11.

The PLI field can be used to efficiently code some commonly used DataField lengths (O bytes, 1 byte or 4 bytes). A
DataField length of O bytes can be encoded with the PLI field set to ”00” or with the PLI field set to ”11” and a
DataFieldLength Indicator set to O (bytes). A DataField length of 1 byte can be encoded with the PLI field set to 01" or
withthe PLI field set to 11" and a DataFieldLength Indicator set to 1 (byte). A DataField length of 4 bytes can be
encoded with the PL1 field set to " 10" (4 bytes) or with the PLI field set to "11” and a DataFieldLength Indicator set to 4
(bytes). The PLI field (possibly together with DataFieldLength indicator field) shall only be used to determine the length
of the DataField; the interpretation of the DataField shall not depend on the value of the PLI field!

6.2.1 Future expansion of the parameter data field

The length of aparameter's DataField is described by the Parameter Length Indicator (PLI) and the DataFieldLength
Indicator. The generic structure and flexibility of MOT allows future expansions of the parameter datafield.

Therefore each parameter with afixed DataField length in one revision of the MOT standard can be expanded in alater
revision of the MOT standard by appending new information at the end of the data field (without changing the definition
of the original datafield; seefigure 23). A decoder working according to the older revision of the MOT standard will still
be able to extract all the expected data, while a decoder working according to the later revision can additionally interpret
the extended information.

2 bits 6 bits 1 bit 7 bits 8 bits N " 8 bits
PLI Paramlid Ext. Length CompressionType New parameter field

ETSI

29 draft EN 301 234 vV2.1.1 (2004-08-12)

11 000110 0 1+N I

Figure 23: Example for the expansion of a defined parameter

An MOT decoder evaluating an MOT parameter with fixed DataField length shall not check if the MOT parameter length
isequal to what the MOT decoder expects. It shall always check if the length of the DataField is equal or greater than
what the MOT decoder expects!

6.2.2 Parameters of the header extension for MOT header mode and
MOT directory mode
The header extension contains transport protocol specific and user application specific parameters. The following sub

clauses describe the transport specific parameters grouped by functionality.

The user application defineswhich MOT parameters are used and the user application definition might also restrict the
range of values permitted for MOT parameters.

6.2.2.1 MOT Basic transport parameters

The MOT basic transport parameters are used to identify and describe the MOT body.

6.2.2.1.1 ContentName

The parameter Cont ent Nane isused to uniquely identify an object. At any time only one object with acertain
Cont ent Name shall be broadcast.

The DataField of this parameter starts with aone byte field, comprising a4-bit character set indicator (see TS 101 756
[34], table xx for thelist of permitted character sets) and a4-bit Rfafield. The preferred character set isSO latinl. The
following character field contains a unique name or identifier for the object. The total number of charactersis determined
by the DataFieldL ength indicator minus one byte.

4 bits 4 bits (n - 1) bytes
character set Rfa character field
indicator
b b, by bg

Figure 24: Coding of the MOT parameter ContentName

Hierarchical structures shall use aslash "/" to separate different levels. No system specific restrictions shall be applied.
Forward slashes (“/") inside the Cont ent Nane separate levelsand slashes are not permitted for any other meaning
than this.

Unless explicitly required by the user application definition, the Cont ent Nane does not have to be avalid filename for
any operating system. A general purpose MOT decoder can thus not use the Cont ent Nane as (part of) the filename
whereit storesthe MOT body. Unique filenames (e.g. containing the Transportld) should be used. The MOT decoder
must be able to map the Cont ent Nanes required by the user application to the internally used filename or data
structure that holdsthe MOT body.

6.2.2.1.2 MimeType

InHTTP, the type of an object isindicated using the Multi-purpose Internet Mail Extensions (MIME) [29] mechanism.
MIME strings categorize object types according to first ageneral type followed by a specific format, e.g. 't ext / htmd ',
i mage/ j peg' and'application/octet-strean.

NOTE: Thebasic MIME string may optionally be followed by a";" and a parameter list. This mechanismis
typically used to indicate character setsfor text types.

ETSI

30 draft EN 301 234 vV2.1.1 (2004-08-12)

In order to correctly present MOT objects, it isrequired for the receiver to be able to determine the type of the object.
Some content types may be signalled using the Cont ent Type and Cont ent SubType fields of the MOT header
information. However, this mechanism is unsuitable for supporting as yet unspecified MIME types, and so limitsthe
range of types that may be supported even when the receiver is PC based. In order to overcome this limitation, the
M neType parameter may be used to supply aMIME type string for each object.

The user application definition indicates how the user application decoder isinformed about the type of an MOT object.
The content type of an MOT object can beindicated using the Cont ent Type/ Cont ent SubType field of the MOT
header core, this MOT parameter M me Ty pe or by other means such as the "file name extension”.

If auser application definition requires that the MOT parameter M ne Ty pe is used to indicate the type of the MOT
object, then no user application decoder shall use the "file name extension” to derive the type of an MOT object!

If auser application usesthe MOT parameter M neType to indicate the type of an MOT object, then the fields

Cont ent Type and Cont ent SubType of the MOT header core (see sub clause 6.1) shall correctly indicate the
body's content type. If a corresponding value of the fieldsCont ent Type and Cont ent SubType isnot availablein
the enumerated list defined within TS 101 756 [34], table xx, then both fields shall be set to 0 to indicate "general
data/object transfer”.

The DataField of this parameter carries the MIME type string appropriate to the object, see [29].

n bytes

character field

Figure 25: Coding of the MOT parameter MimeType

6.2.2.1.3 CompressionType

The Conpr essi onType parameter is used to indicate that an object has been compressed and which compression

a gorithm has been applied to the data. The DataField of this parameter carries aone byte identifier (Compressionld) for
the compressed data format. If new compressed data formats are to be used, a new Compressionld shall be obtained from
and registered with the WorldDAB Information and Registration Centre.

The registered compressed data formats shall be defined in TS 101 756 [34], table xx.
Even an MOT decoder that does not support any compression shall check this parameter to determineif an MOT body
is compressed.
6.2.3 Parameters of the header extension for MOT directory mode only

6.2.3.1 MOT caching support parameters

These parameters can be used to support caching of MOT objects on receiver side. The caching functionality is
described in detail in sub clause 8.1.

6.2.3.1.1 Expiration

The parameter Expi r at i on indicates how long an object can still be used by the MOT decoder after reception loss.
The size of the DataField determinesif an absolute or arelative expiretimeis specified.

The MOT directory extension parameter Def aul t Expi r at i on described in sub clause 7.2.4.3 (if present) definesa
default value for all MOT objects that do not provide the MOT header information parameter Expi r at i on. The default
value defined by Def aul t Expi rati on only appliesto an MOT object if no MOT header information parameter

Expi rati on isprovided for thisMOT object.

If the MOT header information parameter Expi r at i on isprovided for an MOT object, it defines the expire time of the
object. If Expi r at i on isnot provided for the object, then the MOT directory extension parameter

ETSI

31 draft EN 301 234 V2.1.1 (2004-08-12)

Def aul t Expi r at i on definesthe expire time of the object. If neither the MOT header information parameter
Expi rati onisprovided for an MOT object nor the MOT directory extension parameter Def aul t Expi rati onis
provided as adefault for all objects, then the MOT object never expires.

The content provider shall not transmit expired object (i.e., objects with an already expired absolute expire time).

6.2.3.1.1.1 Absolute expire times

If the size of the datafield is4 or 6 bytes, then an absolute expire timeis defined. The value of the parameter field is
coded inthe UTC format (see sub clause 6.2.4.1). It specifies the (absolute) time in UTC when the object expires. The
object isnot valid anymore after it expired and therefore it shall no longer be presented.

Absolute expire times shall only be used if the expire time is known in advance and if achangeto the expiretimeis
considered unlikely. If the content provider wantsto signal an expire time, but no absolute expiretimeisknown in
advance, then arelative expire time shall be used.

6.2.3.1.1.2 Relative expire times

If the size of the datafield is 1 byte, then arelative expire timeis defined. While an absolute expire timeis known in
advance, the relative expiretimeindicates avalidity interval. Theinterval indicates the maximum time span an object is
considered valid after the last time the MOT decoder could verify that this object is still broadcast.

The DataField of this parameter is a one byte value specifying the time the MOT object can still be considered valid
starting at the time the MOT decoder no longer receives any segment of the MOT directory (e.g., no more reception or
receiver switched off) and therefore the MOT decoder has no realiable knowledge which files are still broadcast. The
interval ranges from 2 minutes to 63 days. The interval should be longer than the time between two retransmissions of
the MOT directory; the interval shall be longer than the time between the reception of two MOT directory segments.
Note that due to reception errorsthe MOT decoder might miss MOT directory segments.

The encoding of this parameter is shown in figure 26:

2 bits 6 bits
Granularity Interval
b, bg bsg bo

Figure 26: Coding of the MOT parameter Expiration in case of relative expire times

Granularity: this 2-bit field indicates the temporal resolution of the relative expiretime.

Interval : this 6-bit unsigned binary number specifies the relative expire timein multiples of the timeinterval specified by
thefield Granularity. The value O isreserved for future use and shall not be used.

ETSI

32 draft EN 301 234 vV2.1.1 (2004-08-12)

Table 1: Resolution and covered time intervals for relative expire times

Granularity Temporal resolution Covered time interval
00 two minutes from 2 minutes to 126 minutes (approx. 2 hours)
(2 minutes, 4 minutes, 6 minutes, 8 minutes, ...)
01 half hours from half an hour to 31.5 hours
(0.5 hours,1 hour, 1.5 hours, 2 hours, ...)
10 two hours from 2 hours to 5.25 days
(2 hours, 4 hours, 6 hours, 8 hours, ...)
11 days from 1 day to 63 days (approx. 2 months)
(1 day, 2 days, 3 days, 4 days, ...)

6.2.3.1.1.3 Disabling DefaultExpiration

If the MOT directory extension parameter Def aul t Expi r at i on isused, but some MOT objects of the MOT data
carousel should never expire, then the absol ute expire time of these MOT objects (MOT header information parameter
Expi r at i on) shall be set to the maximum value that can be signalled:

validity flag=1

MJD: all bitssetto 1

UTC flag = 0 (short form of absolute time value)
UTC: setto 23:59

NOTE: Evenif the MOT decoder does no special handling of this specific parameter value, this encoding assures
that an MOT object with this absolute expire time will never expirein practice.

6.2.3.1.2 PermitOutdatedVersions

When the MOT decoder notices a change to the data carousel (i.e. it getsanew MOT directory) then this parameter can
be used toindicate if an outdated (old) version of an MOT object can be used until the current (new) version of this
object is successfully reassembled.

The DataField of this parameter isasingle byte. A value of 0 indicates that the MOT decoder shall not use any other
version of the MOT object than the one currently broadcast. Any value other than 0 in the current (new) MOT directory
indicates that an already available (older) version of an MOT object can be used until the current (new) version of this
object isreceived.

The MOT directory extension parameter Def aul t Per i t Qut dat edVer si ons defined in sub clause 7.2.4.2 (if
present) defines adefault value for all MOT objectsthat do not provide the MOT header information parameter

Per m t Qut dat edVer si ons. The default value defined by Def aul t Per mi t Qut dat edVer si ons only applies
toan MOT object if no MOT header information parameter Per ni t Qut dat edVer si ons isprovided for thisMOT
object.

If the MOT header information parameter Per mi t Qut dat edVer si ons isprovided for an MOT object, then it
indicates whether an outdated version of the object can be presented until the current version of the object isreceived. If
Per m t Qut dat edVer si ons isnot provided for the object, then the MOT directory extension parameter

Def aul t Per mi t Qut dat edVer si ons indicates whether an outdated version of the object can be presented. If
neither the MOT header information parameter Per mi t Qut dat edVer si ons isprovided for an MOT object nor the
MOT directory extension parameter Def aul t Per m t Qut dat edVer si ons isprovided as adefault for all objects,
then the MOT decoder shall not present any outdated version of this object. Note that thisis also the behaviour of
legacy MOT decoders, since the former revision of the MOT standard did not permit to keep an outdated version of an
MOT object.

6.2.3.1.3 UnigueBodyVersion

This parameter is used to uniquely identify aversion of an MOT body (identified by itsCont ent Nane) .

ETSI

33 draft EN 301 234 vV2.1.1 (2004-08-12)

The DataField of thisMOT parameter isa 32-bit field. The value of two parametersUni queBody Ver si on shall be
considered the same if both parameters have the same DataField content.

If thisMOT parameter is used, then every version of an MOT body must have aunique Uni queBody Ver si on
parameter value. The parameter value can be assigned using whatever scheme. It is not mandatory to increment the
parameter value by one for every new version of an abject, the only requirement is uniqueness. The MOT decoder shall
therefore not use this parameter to “guess’ the age of an object’s version!

6.2.3.1.4 Priority

The parameter is used to indicate the storage priority, i.e. in case of a”"memory full" state only the objects having a high
priority should be stored. It indicates the relevance of the content of the particular object for the service, e.g. ahome
page of aHTML based service has a high priority and should therefore not be deleted first, whereas pictures (e.g.
buttons, etc.) are not asimportant as the home page and hence can be deleted first in case of amemory overflow. The
DataField of this parameter carries an 8-bit unsigned binary number. The possible values range from 0 = 'highest priority’
to 255 = "lowest priority".

Note that usually a caching strategy will take into account the priority value assigned by the content provider as well as
user preferences.

6.2.3.1.5 RetransmissionDistance

To support advanced caching of objectsin the receiver, this parameter indicates a guaranteed maximum time between
two retransmissions of an object. The resolution in the time domain is 1/10 second to allow an exact synchronization,
whereas the maximum time which can be indicated reaches up to 1 677 721 seconds (equal approx. 19 days, 10 hours and
2 minutes) for very slow retransmission rates. The DataField of this parameter is encoded as shown in figure 27.

8 bits 24 bits
Rfa RetransmissionDistance

Figure 27: Coding of the MOT parameter RetransmissionDistance

6.2.3.2 MOT conditional access parameters

These parameters are used if conditional accesson MOT level isapplied to the MOT data.

6.2.3.2.1 CAlnfo

The CAl nf o parameter is used to indicate the scrambling status of individual objects within the data carousel where a
service potentially contains both scrambled and unscrambled objects. The syntax of the CAI nf o parameter is defined in

(35].

Even an MOT decoder that does not support conditional accesson MOT level shall check for the MOT parameter

CAl nf o to determineif an MOT body is scrambled. The existence of the MOT parameter CAl nf o for an MOT object
indicates that the body is scrambled. The content of the MOT parameter CAI nf o does not have to be evaluated by a
non conditional access aware MOT decoder, while its presence must be evaluated by every MOT decoder.

6.2.3.2.2 CAReplacementObject

If an object within the data carousel is scrambled and the receiver is unable to unscramble the object, it is desirable for
the receiver to be able to present information about how the user may subscribe to the service in order to decrypt the
scrambled objects. The CARepl acenent Obj ect parameter allowsthis by re-directing the receiver to areplacement
object if the receiver isunable to unscramble a given object. The coding of the parameter is exactly the same asthe
coding of the MOT parameter Cont ent Nane.When comparing the parameter CARepl acenment Gbj ect withthe
Cont ent Nane of an object, the DataFields shall by compared byte-by-byte including the character set indicator.

ETSI

34 draft EN 301 234 V2.1.1 (2004-08-12)

NOTEL Thereplacement object will usually have to have the same object type as the object it replaces. So in case
of aBWS, areplacement object for an image should also be an image. The replacement of an HTML page
should be an HTML page.

NOTE2 It might not be necessary to provide CARepl acenent Obj ect parametersfor every scrambled object.
But if for instance a part of aBWSis scrambled, then at least all MOT objects that can be reached from
unencrypted pages (i.e., the entry pages to the encrypted part of the BWS) should use
CARepl acenent Obj ect parametersto inform the user how he can access the encrypted data part.

User applications such as the Broadcast Web Site permit to link from one object to the other. Usually relative links (e.g.,
"../images/logo.png") are used. Relative links require that the presentation engine (e.g., the browser) knows the name of
the currently presented object so that all links within this object can be interpreted relative to the name of the current
object. The presentation engine (e.g., every browser) will always convert relative links within an object (e.g., an HTML
page) to absolute links and always request objects from the MOT decoder by their absolute name.

So if arequested object can not be provided by the MOT decoder because it can not be descrambled, then the MOT
decoder must tell the user application decoder that it has to request the replacement object instead. This assures that the
user application decoder interprets all links within the replacement object relative to the name of the replacement object
(and not relative to the name of the originally requested object). An implementation that just returns the replacement
object instead of the originally requested object will not work for user applications that permit relative links between
objects!

The replacement object shall not be scrambled.

6.2.3.3 MOT profile identification

These parameters can be used if a user application supports multiple profiles.

6.2.3.3.1 ProfileSubset

The data carousel for auser application carries objects to support more than one user application profile. Additional
hinting may be applied by the MOT decoder if it knows which profile a given object is used by. For areceiver
conforming to profile x, only objectsthat are relevant to profile x receivers need be decoded and stored. The optional
Prof i | eSubset parameter allowsthe content provider to indicate alist of profiles for which any given objectis
relevant. The Pr of i | eSubset parameter datafield carriesalist of 8-bit unsigned binary number profileids which
identifies all of the profiles for which the object isrelevant. All profileids are sorted in ascending order within the list.

ThisMOT parameter assumes that the user application uses 8-bit unsigned binary number profileidsto signal the
profiles supported by the content provider. If the user application uses profileids of a different size, then thisgeneric
parameter can not be used.

If thePr of i | eSubset parameter is not specified for an object in the data carousel, the receiver shall assume that the
object may be relevant to all signalled user application profiles.

6.2.4 Coding of parameters

6.2.4.1 Coding of time parameters
Some MOT parameters can signal absolute time values (e.g., Expi rati on).

Absolute times are coded as shown in figure 28 (see dso EN 300 401 [1]):

ETSI

35 draft EN 301 234 V2.1.1 (2004-08-12)

1 bit 17 bits 2 hit 1 bit 11 or 27 bits
Validity MJD uTC uTC
Rfu X
flag date flag time
short form . long form . -
(UTC flag =0) hours minutes (UTC flag =1) hours minutes | seconds | milliseconds

5 bits 6 bits 5 hits 6 bits 6 bits 10 bits

Figure 28: Encoding of absolute time information

Validity flag: Thisbit is used to indicate whether the time and date information (UTC and MJD) carried in thetime
parametersisvalid or not asfollows:

- Vdidity flag=0: "Now"; MJD and UTC shall be ignored and be set to 0;
- Vdidityflag=1: MJD and UTC arevalid.
Depending on the value of the UTC time flag the size of the DataField is 4 bytes (UTC flag = 0) or 6 bytes (UTCflag = 1).

All numeric values (MJD date, hours, minutes, seconds, milliseconds) are coded as unsigned binary numbers.

6.3 List of all MOT parameters in the MOT header extension

The MOT header extension contains transport protocol specific and user application specific parameters. The transport
protocol specific parameters are defined in this sub clause.

This document also defines the range of Parameter I dsto be used for future extension of the MOT transport protocol
and for user application specific parameters.

It is up to the user application to decide which MOT parameters (and also which user application specific parameters, if
any) are used and which parameter values are permitted.

A generic MOT decoder will forward all user application specific parametersto the user application decoder, while
protocol specific parameters need to be evaluated and handled by the MOT decoder itself.
Thefollowing rules apply:

All mandatory transport specific parameters must be evaluated and handled by the MOT decoder.

All optional transport specific parameters may and all unknown transport specific parameters must be ignored
by the MOT decoder.

For some optional MOT parameters the expected behaviour when ignoring the parameter is explicitly stated (e.g.
for Def aul t Per mi t Qut dat edVer si ons/Per m t Qut dat edVer si ons).

All user application specific parameters must be handed over to the user application decoder.

General rulesfor transport specific parameters:

One MOT parameter is mandatory for both content provider and MOT decoder: Cont ent Narre.
Every MOT decoder shall check if an MOT body is compressed (MOT parameter Conpr essi onType) or
scrambled (MOT parameter CAl nf o).

The MOT decoder does not necessarily (i.e. unless required by the user application) have to be able to
decompress or unscramble objects, but it shall be able to identify and discard objects that it can not process.

ETSI

36

draft EN 301 234 V2.1.1 (2004-08-12)

Thefollowing tablelists all currently defined MOT parameters carried within the MOT header extension (these
parametersrefer to asingle MOT object); MOT parameters carried in the MOT directory extension (these parameters
refer to the data carousel as awhole) are defined in sub clause 7.2.4. For historical reasons some user application specific
parameters are also included. For user application specific parameters not included in thislist the meaning of the
parameter depends on the user application. It is possible that two user applications use the same Parameterld but assign
atotally different meaning to it. The decoding of the user application specific parameter always has to take into account
which user application provides the data.

Table 2: Coding of extension parameter

Parameter Id Parameter Definition Possible Usage mandatory Support
bg by occurrences for content mandatory for
provider MOT decoders
00 0000 reserved for MOT protocol extensions
00 0001 [PermitOutdatedVersions[6.2.3.1.2 [only once [no [no
000010
000011 reserved for MOT protocol extensions
00 0100
000101 (TriggerTime see [32] see [32] see [32] see [32]
(user application
specific parameter)
000110 |reserved for MOT protocol extensions
000111 |RetransmissionDistanc |6.2.3.1.5 |only once no no
e
001000 ([reserved for MOT protocol extensions
001001 |[Expiration 6.2.3.1.1 only once no yes, if receiver
provides "MOT
caching support"
00 1010 |Priority 6.2.3.1.4 only once no no
001011 (Label see [33] only once no no
(user application
specific parameter)
001100 |ContentName 6.2.2.1.1 only once yes yes
001101 ([UniqueBodyVersion 6.2.3.1.3 only once no no
001110 reserved for MOT protocol extensions
001111
010000 ([MimeType 6.2.2.1.2 only once user application user application
specific specific
01 0001 ([CompressionType 6.2.2.1.3 only once yes (if body is yes; every
compressed) receiver must
check if an object
is compressed
010010
reserved for MOT protocol extensions
011111
10 0000 |AdditionalHeader see [33] once or several see [33] see [33]
(user application times
specific parameter)
10 0001 |ProfileSubset 6.2.3.3.1 only once no no
10 0010 reserved for MOT protocol extensions
100011 |CAlnfo 6.2.3.2.1 only once yes (if CAis used) [yes;every
receiver must
check if an object
is scrambled
100100 |CAReplacementObject (6.2.3.2.2 only once no no
100101
ooe reserved for user application specific parameters
111111

ETSI

37 draft EN 301 234 V2.1.1 (2004-08-12)

7 MOT transport modes

The MOT protocol supports two different transport modes:
MOT header mode
MOT directory mode

MOT header modeisused if thereisjust one MOT object valid at any time (e.g. user application MOT Slide Show (see
[32]) where anew slide isreceived, processed, displayed and discarded). In MOT header mode the header information
describing the single MOT body is carried asan MOT header.

MOT directory modeis used if file system structures with multiple files are broadcast as a data carousel. All header
information of all broadcast MOT objects is combined with parameters describing the set of files. The resulting combined
information is called the MOT directory. Thereisonesingle MOT directory at any time. A received MOT directory
replaces any former MOT directory.

A user application definition shall specify if the user application uses MOT header mode or MOT directory mode.
Some of the features of the MOT directory mode are:

MOT directory mode permits simple memory management on receiver side since the content provider can
explicitly signal which MOT objects are valid and thisimplicitly also indicates which MOT objects shall be
removed on receiver side.

MOT directory mode can assure consistency of the set of objects. It is possible to indicate which version of an
object isto be presented with which version of another object.

MOT directory mode can be extended to permit persistent caching and delta updating of objects on receiver
side. If several MOT objects of auser application are rarely updated, then persistent caching can significantly
improve the start-up time of the user application.

MOT directory mode permits conditional accesson MOT level where some objects are accessible on all MOT
terminals supporting the user application whereas some other objects are protected by conditional access.

MOT directory mode combines all header information of all objectsin one single MOT directory. Since
broadcast of thisMOT directory takes sometimethe MOT directory mode is not well suited for fast changes to
the set of broadcast objects.

MOT header mode can be seen as a special case of the MOT directory because it describes the one single MOT object
valid at thistime. The MOT directory mode can be used to transmit one single object; whereas the MOT header mode is
limited to one singlefile only.

7.1 MOT header mode

This MOT transport modeis used when thereis one single valid object at any time. This transport modeis usually used
for user applications that decode, process and discard object after object from a stream of objects. An example user
application isthe MOT Slide Show, see[32]). If the MOT decoder detectsthat anew MOT object is being used and the
current MOT object is not yet reassembled, then the MOT decoder shall discard the incomplete object and start
reassembly of the new MOT object.

In MOT header mode the MOT object consists of one MOT header (containing the header information) describing one
MOT body (containing the payload).

The MOT header describing the body shall be sent at |east once preceding the body of that object and it can be inserted
during the body transmission if required.

The MOT header modeis not intended to carry file system structures (data carousels). Even if a special user application
could usethe MOT objects coming out of the MOT decoder to rebuild afile system structure on receiver side, the task
of the MOT decoder islimited to decoding MOT objects and forwarding them one after the other to the user application
decoder.

ETSI

38 draft EN 301 234 vV2.1.1 (2004-08-12)

7.1.1 New object/ object update

If anew object istransmitted it will have anew Cont ent Nane and it will get anew Transportld. It will replace any
object already stored inthe MOT decoder.

If the information carried in the body of an object is updated, a new object has to be transmitted. A body cannot be
partly updated since MOT header mode just handles the object as an entity. While the Cont ent Name will be the same,
the Transportld will change. Therefore a new body and a new header have to be transmitted. Header and body segments
of the updated object will be transmitted with the new Transportid.

MOT provides two methods to signal achange in the header information of an object:
changing the Transportld;
sending a Header Update.

The first method shall be used, if the header information isto be changed and the transmission of the body isto be
continued. Then the transmission of the new object with updated header (but with the same body) is done with a new
Transportld. If the Transportld changes, then the MOT decoder will remove all MOT segments received so far and start
reassembly of the new (but actually unchanged) MOT body from scratch.

The second method shall be used, if only the header is changed, but the body is not sent anymore (for example when an
object istriggered using a HeaderUpdate that overwrites (or sets) the Tr i gger Ti me). The MOT decoder shall pass
any HeaderUpdate to the user application decoder. It isthe task of the user application decoder to check if the
HeaderUpdate refers to an object in the user application decoder and it is also the task of the user application decoder to
process the header update. See sub clause 7.1.3.

7.1.2 Management of Transportlds

The Transportld field is used to uniquely identify a specific version of an object. In order to minimize the risk of
confusion for the MOT decoder when reassembling MOT objects, the content provider has to ensure that Transportlds
are not re-used until al other available Transportlds have been used.

NOTE: TheTransportld is used solely for the purpose of identifying the object during transport - it has no user
application significance whatsoever.

7.1.3 Updating header information / triggering objects

The HeaderUpdate is a specific method of updating the parameters of objects, where both header core and header
extension are sent after the entire object (MOT header and MOT body) has already been transmitted. It is used to update
MOT parameters (e.g., Tri gger Ti ne). The header update object shall consist at least of the parameters described
hereafter:

ContentName: This parameter is used to link header update to the object to be updated.
ContentType: This parameter shall be set to 0x000101 = MOT Transport.
ContentSubType: This parameter shall be set to 0x0000000000 = UpdateHeader.
BodySize: Thisfield shall be set to zero.

The MOT parameter Cont ent Nane cannot be replaced during a header update since it is used to link the header
update to the object to be updated.

ETSI

39 draft EN 301 234 vV2.1.1 (2004-08-12)

header core header extension
body size = 0 | header size ContentType ContentSubType parameter parameter ... | parameter
=0x000101 = 0x0000000000
ContentName

Figure 29: Structure of the header update

7.2 MOT directory mode

7.2.1 Introduction

MOT directory mode is used if file system structures with multiple files are broadcast as a data carousel. All header
information of all broadcast MOT objectsis combined with parameters describing the overall set of files. Theresulting
combined information is called the MOT directory. Thereisone single MOT directory at any time. If anew MOT
directory iscreated it replaces the former MOT directory. This MOT directory describing all MOT objectsissent "in
parallel" (see sub clause5.3.2.1) to all the MOT bodies it describes.

This clause describes the format of the MOT protocol that provides a management mechanism when broadcasting MOT
objectsin adatacarousel. A datacarousel isadelivery system that allows a user application server (the broadcast
component of a user application) to present a set of distinct objects to auser application decoder (a program that isrun
by areceiver) by cyclically repeating the contents of the data carousel. For some user applications the data carousel may
complete only afew or asingle cycle.

Within the data carousel, the MOT directory is used to provide a compl ete description of the content of the data
carousel, together with sufficient information to find the data for each described object. VVersion control mechanisms
applied both to the objects within the data carousel and the directory itself provide the ability to correctly manage
updates to the data carousel with minimum effort and at all times ensure that the correct version of an object is used by
the user application.

If auser application requests a particular object, the receiver can easily determine by looking in the directory whether or
not the requested objects exists within the data carousel and where to find the object data. If the object the user
application requestsis not yet available in the receiver it may simply wait for the next time that the object is broadcast. If
desired, the receiver may optionally implement caching strategies to reduce the latency of accesses by the user
application decoder and improve the performance of the data carousel.

7.2.2 Assembly of MOT bodies and MOT directory

MOT transfers objects by dividing both MOT directory and MOT bodiesinto fixed length segments and then
transferring each segment within an M SC data group. In order to reassemble each body, the MOT decoder uses a
Transportld and a SegmentNumber carried in the Session Header field of the data group to identify which segment of
which body the datagroup is carrying. The Transportld is aunique identifier for a particular version of an object within
the data carousel and is also used to provide version management of the data. Whenever the MOT object (MOT header
information or MOT body (or the segmentation)) changes, the Transportld of the MOT body is also changed.

7.2.3 MOT directory coding

The MOT directory isthetable of contents for the MOT data carousel and is the mechanism for controlling accessto the
objects. Any request for an object can be processed by looking up the object in the MOT directory and using the
directory to identify the Transportld of the desired object. The directory is also the key to managing version control of
objects within the MOT data carousel; if the Transportld of the directory changes, the contents of the data carousel
should have changed and a simple examination of the directory can identify all the objects that have changed.

ETSI

40 draft EN 301 234 V2.1.1 (2004-08-12)

The directory contains parameters to describe the entire data carousel together with alist of the required directory
information for each object within the data carousel. The structure of the MOT directory is shown in figure 30.

1bit 1 bit 30bits 16 bits 24 bits 1 bit 2bits 13 bits 16 bits m x 8 bits

b0 | bO |b29 bOf bl5 bO|f b23 b0 || b0 |[bl bQ| bl2 b0 [b15 b0
ck | riu Directory|| Number [[DataCaro rRiull Rfa Segment ED;:ﬁgg] Directory | Directory Directory Directory
Size ||Of Objects| Period Size Length Extension| Entry1 | [Entryn |[|| Entry N

4 Ke*8 bits

b15 b0 || header

Transport Id || information
Parameter 1| ...[| Parameter p|| ...|| Parameter H (object n) (object n)

(6 bits \

bl bO [[b5 bO)

PLI Paramld|| Parameter Data

Figure 30: Structure of the MOT directory

CF (CompressionFlag): thisbit shall be set to 0.

Rfu: This 1-bit field shall be reserved for future use of the remainder of the structure. The bit shall be set to zero for the
currently specified definition of the MOT directory. An MOT decoder hasto verify the value of thisbit.

DirectorySize: Indicates the total size of the MOT directory in bytes.
Number OfObj ects: I ndicates the total number N of objects described by the directory.

CarousdPeriod: Indicates the maximum time in tenths of a second for the data carousel to complete acycle. It isthe
longest time taken for any object in the data carousel to be retransmitted. A value of 0 shall indicate that the
Carousel Period is undefined.

NOTE: Thisisthecaseif the data carousel only makes one turn or the bit-rate changes dynamically.

Rfu: This 1-bit field shall be reserved for future use of the remainder of the structure. The bit shall be set to zero for the
currently specified definition of the MOT directory. An MOT decoder hasto verify the value of this bit.

Rfa: This 2-bit field shall be reserved for future additions. The bits shall be set to zero until they are defined.

SegmentSize: Indicates the SegmentSize in bytes that will be used for the segmentation of objects withinthe MOT data
carousel. A value of 0 indicates that objects within the data carousel may have different segmentation sizes. The last
segment of an object may be smaller than this SegmentSize.

DirectoryExtensionL ength: Indicates the total number of following directory extension bytes.

DirectoryExtension: Carriesalist of parameters which are used to describe the entire data carousd. The structure of
these parametersis as defined for the MOT header extension parameters (see sub clauses 6.2 and 7.2.4).

Transportld: Identifies the object to which the following MOT header information refers.

Header information: Carries the header core and header extension of the object. Every object of the data carousel shall
be described only once per MOT directory, even if an object istransmitted multiple times during one turn of the data
carousel. The coding structureis exactly the same for header information in datagroups of type6 or 7 (i.e., inthe MOT
directory) and in data groups of type 3 (i.e., in aseparate MOT header).

ETSI

41 draft EN 301 234 V2.1.1 (2004-08-12)

7.2.4 List of all MOT parameters in the MOT directory extension

Thedirectory entries describe individual objects within the data carousel. Parametersin the directory extension describe
the overall set of objects, i.e. not an individual object. The structure of these parameters s as defined for the header
extension parameters, see sub clause 6.2.

The directory extension contains transport protocol specific and user application specific parameters. The transport
protocol specific parameters are defined in this sub clause.

This clause also defines the range of Parameter |ds to be used for future extension of the MOT transport protocol and for
user application specific parameters.

It isup to the user application to decide which MOT transport specific parameters (and also which user application
specific parameters, if any) are used and which parameter values are permitted.

A generic MOT decoder will forward all user application specific parameters to the user application decoder, while
transport protocol specific parameters need to be evaluated and handled by the MOT decoder itself.
Thefollowing rules apply:

All mandatory transport specific parameters must be evaluated and handled by the MOT decoder.

All optional transport specific parameters may and all unknown transport specific parameters must be ignored
by the MOT decoder.

For some optional MOT parameters the expected behaviour when ignoring the parameter is explicitly stated (e.g.
for Def aul t Per mi t Qut dat edVer si ons /Perni t Qut dat edVer si ons).

All user application specific parameters must be handed over to the user application decoder.

Thefollowing tablelists all currently defined MOT parameters carried within the MOT directory extension (these
parameter refer to the data carousel as awhole); MOT parameters carried in the MOT header extension (these parameters
refer to asingle MOT object) are defined in sub clause 6.3.

Table 3: Directory extension parameters

Parameter Parameter Definition | Possible [Usage mandatory for] Support mandatory
Id occurrence| content provider for MOT decoders
b5 bo S
00 0000 [SortedHeaderInformation 7.24.1 only once no no
00 0001 [DefaultPermitOutdatedVersions|7.2.4.2 only once no no
00 0010
reserved for MOT protocol extensions
00 1000
001001 |DefaultExpiration |7.2.4.3 |on|y once |no no
001010
reserved for MOT protocol extensions
011111
10 0000
reserved for user application specific parameters
111111

7241 SortedHeaderInformation

The parameter is used to signal that the headers within the MOT directory are sorted in ascending order of the
Cont ent Nane parameter within every header information block. The parameter has no DataField.

If areceiver gets anew version of the MOT directory it hasto compare this new directory with the old version to
determine which objects are still valid, which objects are del eted and which objects were updated.

ETSI

42 draft EN 301 234 V2.1.1 (2004-08-12)

For an efficient implementation it is very helpful if the header information within the MOT directory is aready sorted by
the transmission side by definition. It will be especially helpful for receivers with limited resources.

If the parameter Sor t edHeader | nf or mat i on is used then the MOT decoder may assume that the header
information with the MOT directory is sorted in ascending order of the Cont ent Nane.

The sorting is done byte by byte, comparing the bytes of the character fields of the Cont ent Nane. The character set
indicator field of the Cont ent Namre has no impact whatsoever on the sorting. See Annex A for adescription of the
sorting algorithm.

To reduce receiver complexity the content provider should sort the header information and signal it by using thisMOT
directory extension parameter.

7.24.2 DefaultPermitOutdatedVersions
This parameter belongsto MOT functionality "MOT caching support", see sub clause 8.1.

When the MOT decoder notices a change to the data carousel (i.e. it getsanew MOT directory) then the MOT decoder
must betold in the current (new) MOT directory if an old version of an MOT object can be used until the current (new)
version of this object isreceived.

The DataField of this parameter isasingle byte. A value of 0 indicates that the MOT decoder shall not use any other
version of the MOT object than the currently broadcast. Any value other than 0 indicates that an old version of an MOT
object can be used until the current (new) version of this object is received.

The MOT directory extension parameter Def aul t Per mi t Qut dat edVer si ons definesadefault valueall MOT
objects that do not provide the MOT parameter Per mi t Qut dat edVer si ons. The default value defined by

Def aul t Per i t Qut dat edVer si ons isonly used for an MOT object if no MOT parameter

Per m t Qut dat edVer si ons isprovided for thisMOT object.

If neither the MOT header information parameter Per i t Qut dat edVer si ons isprovided for an MOT object nor the
MOT directory extension parameter Def aul t Per mi t Qut dat edVer si ons isprovided asadefault for all objects,
then the MOT decoder shall not present any outdated version of this object. Note that thisis al so the behaviour of
legacy MOT decoders, since the former revision of the MOT standard did not permit to keep an outdated version of an
MOT object.

7.2.4.3 DefaultExpiration
This parameter belongsto MOT functionality "MOT caching support", see sub clause 8.1.

The MOT directory extension parameter Def aul t Expi r at i on isused to indicate adefault value that specifies how
long an object can still be used by the MOT decoder after reception loss. The coding of this parameter isthe same asthe
encoding for the MOT header information parameter Expi r at i on, seesub clause 6.2.3.1.1.

The MOT directory extension parameter Def aul t Expi r at i on definesadefault valueall MOT objects that do not
provide the MOT parameter Expi r at i on. The default value defined by Def aul t Expi r ati onisonly used for an
MOT object if no MOT parameter Expi r at i on isprovided for thisMOT object.

If neither the MOT header information parameter Expi r at i on is provided for an MOT object nor the MOT directory
extension parameter Def aul t Expi r at i on isprovided asadefault for all objects, then the MOT object never expires.
7.2.5 Segment size of the MOT directory

For MOT objectswithin an MOT data carousel, the segmentation size may be indicated in the MOT directory (i.e., the
parameter SegmentSize within the MOT directory core). However, the size of segments for the MOT directory itself
cannot be known before the first MOT directory segment is received.

ETSI

43 draft EN 301 234 V2.1.1 (2004-08-12)

7.2.6 Identification of the MOT directory

The MOT directory isthe key to accessing any object within the data carousel and so it shall be possible for an MOT
decoder to filter for the directory easily. Within an MOT stream that uses MOT directory mode the following rules apply:

- For each data carousel of objectsthere shall be one MOT directory that describesall currently broadcast MOT
objects within the data carousel.

- AnMOT stream shall contain at most one data carousel.

In order to provide easy and effective filtering for the directory, a particular data group type shall be used - Type 6:
uncompressed MOT directory or Type 7: compressed MOT directory. To identify the MOT directory, the MOT decoder
should filter for the directory by looking for data groups with a data group type 6 or 7. Because there can only ever be
one directory within the stream of data groups, this can always be done unambiguously. Annex C, sub clause C.3.4.3
explains how the MOT decoder can acquirethe MOT directory even if auser application permits both compressed and
uncompressed MOT directory. Once acquired, changes to the directory can always be detected by looking for changes
in the Transportld of the MOT directory.

7.2.7 Use of the MOT directory mode

7.2.7.1 Segment reception order

The order in which MOT segments are received is unimportant for the MOT decoder — the SegmentNumber and
Transportld fields of each segment allow accurate reconstruction of the MOT directory (and of each MOT body)
regardless of when theindividual segments are received.

7.2.7.2 Service acquisition

The key to acquiring a service broadcast in a data carousel is reception of the MOT directory. Once this has been
received, the complete structure and contents of the data carousel is known, even if the datafor the objects themselves
has not yet been received. If the scope of the data carousel is known, the receiver has al the information it requiresto
process requests for an object from a user application— it knows whether or not a requested object exists within the data
carousel and how to identify the object when it is received.

The MOT decoder can always determine the correct contents of the data carousel by examining the current directory —
thereisno need for an MOT decoder to have any knowledge about previously broadcast information in order to
correctly decode the current data carousel.

7.2.7.3 Version control

The use of adata carousel implies auser application data set that is essentially static — it should be unlikely that the data
carried in the data carousel will change rapidly. However, the data may well need to change and it isimportant that an
MOT decoder is able to detect when the data carousel has changed so that it can properly manage any stored data, if
applicable.

Each object in the data carousel has a Transportld assigned to it that is carried both in the body segments

(for verification and identification) and in the MOT directory (for data carousel management). If any object in the data
carousel is changed (segmentation, header information or body), anew Transportld shall be assigned to the object. This
requires achange to the directory and so the Transportld of the directory shall also be changed to reflect this— therefore
any change to the data carousel can be detected merely by checking for changesin the Transportld of the MOT
directory.

7.2.7.4 Allocation of Transportlds

The Transportld field is used to uniquely identify a specific version of an object within the data carousel. In order to
minimize therisk of confusion for the MOT decoder when rapid updates are taking place, the content provider hasto
ensure that Transportlds are not re-used until all other available Transportlds have been used. If adata carousel update
occurs the transmission side shall not re-use Transportlds of objects within the old MOT directory for new or updated
objectsin the new MOT directory

ETSI

44 draft EN 301 234 V2.1.1 (2004-08-12)

NOTE: TheTransportld is used solely for the purpose of identifying the object during transport— it has no user
application significance whatsoever.

7.2.7.5 Prioritising objects within the data carousel

Because the transmission order of objects (and also their segments) within the data carousel is unimportant, it follows
that objects which have more significance than others to the user application may be repeated multiple times within one
turn of the data carousel, in order that the acquisition time for these objectsis minimized. In particular, the directory may
betreated in thisway, asitis central for the MOT decoder to being able to access the objects within the data carousel.

NOTE: TheMOT parameter Ret r ansm ssi onDi st ance may be used to indicate the guaranteed maximum
time until individual objects appear again within the overall data carousel, as this may differ from the
period of the entire data carousel (which is defined as the longest repetition period for any object in the
data carousel).

7.2.7.6 Managing updates to the data carousel

When the data carousel is changed there is no requirement to complete either the current cycle of the data carousel or
the current object.

If the data carousel is changed the next cycle of the data carousel should then start with the new or updated objects
being broadcast first.

The transmission side shall also assure that all objects within the data carousel are broadcast even if asmall portion of
the data carousel is updated/added more frequently than one data carousel cycle. It isimportant that a change to the
data carousel does not completely restart the transmission cycle.

To givean example:

If the data carousel cycleis five minutes and some small object is changed every minute, then the data carousel shall not
restart from scratch and shall not start repeating the first minute of the data carousel without ever broadcasting the data
scheduled for the remaining four minutes.

Assoon asan MOT decoder detects a change to the directory, it shall use the information in the new directory to
determine whether or not any previously stored MOT body is still valid.

See annex F for more detailed information how the content provider has to manage changes to the MOT data carousel.

7.2.7.7 MOT decoder behaviour in case no data is received for a long time

If the MOT decoder receives no datafor more than one hour, then the MOT decoder shall completely stop processing
MOT body segments and it shall no longer reassemble MOT bodies. Once reception is restored, then the MOT decoder
hasto first successfully reassemble the current MOT directory. It then hasto check if all MOT bodies that are currently
reassembled still use the same Transportld. Only then the MOT decoder is permitted to continue reassembly of MOT
bodies.

The above behaviour isrequired to assure that an MOT decoder that did not get datafor avery long time does not
assumethat MOT body segmentsit receives still refer to the very same version of a body.

ETSI

45 draft EN 301 234 V2.1.1 (2004-08-12)

EXAMPLE: The MOT reassembly unit is ordered to reassemble an MOT body A with Transportld X. Before
the MOT body can be completely reassembled, the MOT decoder |oses reception.
For along timethe MOT decoder receives no MOT segments at all. After some time the content
provider does not broadcast object A any more and later on re-uses the Transportld X for another
object B.
If reception is now restored, then it might happen that the MOT body segments with Transportld X
(now referring to MOT object B) are received before the current MOT directory is completely
reassembled. If the MOT reassembly unit waiting for MOT body segments with Transportld X (the
outdated object A) now processes the newly received MOT body segments as usual and tries to
complete reassembly of what it believes to be object A, then amix of MOT body segments of object
A and object B will result. Sincethereis no error detection on MOT entity level, the MOT
reassembly unit can not detect such inconsistencies and might thus forward a " successfully"
reassembled MOT body with Transportld X to the object management.
Assoon asthe MOT decoder has completely reassembled the current MOT directory, it can detect
that the Transportld now refersto another MOT object and restart reassembly of object B from
scratch, but at thistime already erroneous data could have been forwarded to the user application
decoder.

To avoid the inconsistencies explained in the above example, it is necessary that after a reasonable time without
reception the MOT decoder first verifies that the Transportlds of the MOT body segments still refer to the same MOT
objects before it continues reassembly of MOT bodies.

NOTEL The content provider hasto ensure that Transportlds are not re-used until all other available Transportlds
have been used. Thereforeit will usually take very long until a Transportld is reused. However, the
receiver could have been without reception for avery long time or in the meantime there could have been a
change of the service configuration (e.g., acompletely new data carousel (same user application type) is
now broadcast in the same data channel) and the receiver now gets data that uses the same Transportlds,
but for completely different objects.

To detect "reception loss", the MOT decoder keepstrack of the last timethe MOT decoder received any segment of the
current MOT directory (i.e., of the MOT directory currently used by the object management). If no segment of the
current MOT directory isreceived for more than one hour, then the MOT decoder shall stop reassembly and shall first
reassembly and eval uate the current MOT directory before it continues reassembly of MOT bodies.

Reassembly of the MOT directory shall not use MOT directory segments ol der than one hour.

NOTE2: Keeping track of the last time an MOT segment of the current MOT directory was received is also needed
for the evaluation of relative expiretime. The parameter that holds the last time any segment of the current
MOT directory was received can thus be used for the evaluation of relative expire times and also to detect
"reception loss".

NOTE3: Receiverswith advanced reassembly units (see also sub clause C.3.4.1.1) don't have to discard MOT body
segments once reassembly is stopped. They are permitted to put the MOT body segments into the
"segment buffer" and they may replay the buffered MOT body segments as soon as the current MOT
directory isreceived. Note that the "segment buffer" will discard all MOT body segments that are older
than one hour.

7.2.8 MOT directory compression

The MOT directory containsall Cont ent Nanes describing the directory structure of the current data carousel. Data
structures containing long 'file names' are usually very efficiently compressible.

MOT directory compression is used to reduce the size of the MOT directory, allowing a much more economic and
efficient usage of the (limited) available bandwidth. The repetition rate of the very important MOT directory may be
increased and/or more useful content may be sent over the broadcast channel.

The standard (uncompressed) MOT directory indicates the length of its complete MOT entity at the beginning of the
entity. The compressed MOT directory is also preceded by a datafield that indicates the size of the MOT entity at the
beginning of the entity. Assembly of the compressed MOT directory and the uncompressed MOT directory is thus
exactly the same. However, the compressed MOT directory uses the data group type 7 during transfer. The only

ETSI

46 draft EN 301 234 V2.1.1 (2004-08-12)

additional action that must be performed for compressed MOT directoriesisto de-compress its content
(CompressedM OTDirectoryData) beforeit is evaluated.

1 bit 1bit 30bit 8 bit 2 bit 30 bit C x 8 bit
Compression | rfu | EntitySize | Compressionld| rfu Uncompressed |[Compressed
Flag DatalLength |MOTDirectoryData

Figure 31: Structure of a compressed MOT directory

CompressionFlag: this bit shall be set to 1.

rfu: thisbit isreserved for future use of the remainder of the structure. This bit shall be set to O until it isdefined. An
MOT decoder hasto verify the value of this hit.

EntitySize: this 30-bit field, coded as an unsigned binary number, indicates the total size of the entity in bytes (9 bytes
header + length of CompressedM OTDirectoryData (C)).

Compressionld: this 8-bit field coded as an unsigned binary number indicates the compressed dataformat. For the
values of thisfield see sub clause 6.2.2.1.3.

rfu: this 2-bit field bit is reserved for future use of the remainder of the structure. These bits shall be set to O until they
aredefined. An MOT decoder hasto verify the value of these bits.

Uncompr essedDatal ength: length in bytes of the standard (uncompressed) MOT directory (after decompression of the
CompressedM OTDirectoryData field). Thisinformation is provided to simplify memory management for the MOT
decoder.

CompressedM OTDirectoryData: The standard MOT directory (see sub clause 7.2.3) in acompressed form (using the
compressed data format specified by parameter Compressionld).

Thefirst bit of the MOT entity (the CompressionHag) indicates to the MOT decoder if the MOT entity carries a standard
(uncompressed) MOT directory or acompressed MOT directory.

Data group type 6 is used to carry the uncompressed MOT directory. Data group type 7 is used to carry the compressed
MOT directory. If both compressed and uncompressed MOT directory (describing the very same data carousel) are sent
in parallel, then both shall use the same Transportld.

All MOT decoders that support MOT directory compression shall also support the standard (uncompressed) MOT
directory (that is carried in data group type 6). Annex C, sub clause C.3.4.3, indicates how an MOT decoder that supports
MOT directory compression can easily reassemble a compressed and/or uncompressed MOT directory.

It isup to the user application to decide if MOT directory compression is permitted and which compressed data formats
are permitted.

It isrecommended that all new user applications permit MOT directory compression.

8 MOT functionality

8.1 MOT caching support (MOT directory mode only)

Before MOT caching is explained in detail, this sub clause will first outline at avery simple MOT decoder without any
caching. Such avery smple MOT decoder will automatically reassemble the MOT directory but not reassemble MOT
objects until the user application decoder requests an object. Such an MOT decoder might even discard every received
object once it was forwarded to the user application decoder. For every request by the user application decoder such an
MOT decoder hasto wait until the requested MOT object is broadcast for the next time and until all its ssgments have
been successfully received. If such an MOT decoder is able to inform the user application decoder if data used by the
user application decoder got updated by the content provider then such an MOT decoder could be perfectly compliant
to the MOT standard.

ETSI

47 draft EN 301 234 V2.1.1 (2004-08-12)

It isclear that the user experience of such an MOT decoder would be unacceptabl e because the access times of the
objects would be abysmal: since the data rate within the broadcast channels are relatively low compared to the data that
isbroadcast it can take dozens of seconds or even minutes until all datais broadcast. If an object is broadcast once per
minute an MOT decoder that needs to reassembl e this object might have to wait a minute (or even multiple minutesin
case of reception errors) until the object is successfully received.

To assure that the accesstime to MOT objects (i.e., the time a user application decoder (and thus the user) has to wait to
get the requested MOT object) is as short as possible, all MOT decoders will use caching.

The aim of caching isan improved access time to the objects of auser application; caching shall not change the
appearance of the user application. Caching, especially persistent caching where datais stored on permanent memory
such as ahard disk, shall always present the data as the content provider indicates in the broadcast channel. Care has to
be taken to assure that the user application never presents outdated or inconsistent data (i.e., invalid data). In the case of
the very simple MOT decoder outlined above no data that can no longer be received (i.e., becauseit is no longer
broadcast by the content provider or because there is no reception) will be presented, thus the very simple MOT
decoder assures that no outdated content is presented.

For caching MOT decoders the consistency and validity of datathat isso crucial for the content provider is assured by
aset of MOT transport specific parameters.

Caching implies different tasks

Object reassembly: The MOT decoder will try to use all successfully received MOT segments so that all
broadcast MOT objects are reassembled and available to the user application decoder as soon as possible.
Most MOT decoders will start reassembly of all MOT objectsin parallel as soon asthe MOT directory is
received for the first time. More advanced MOT decoders will even use MOT body segments that were received
before the MOT directory could be completely reassembled (see sub clause C.3.4.1)

Object validity: the MOT decoder has to assure that the user application decoder gets only MOT objects that
the content provider wants to be available at the time the object is requested by the user application decoder.

Object management: the MOT decoder must do memory management in case the data carousel contains more
objects than the MOT decoder is able to store in its memory. In this case the MOT decoder will try to keep
those MOT objectsin its cache that are "most likely" or "most frequently” requested by the user application
decoder in order to minimize the average accesstime.

To support caching MOT decodersthe MOT protocol provides parameters that help the MOT decoder to determineif a
cached aobject can be consider valid (i.e., forwarded to the user application decoder upon request). Other MOT
parameters support the memory management of the MOT decoder.

Note that the content provider might use just some of the MOT parameters defined for MOT caching. He might for
instance decide not to provide MOT parametersRet r ansni ssi onDi stanceorPriority.

The following sub clauses give additional detailsto the above given tasks and they also list the MOT parameters that
support these tasks.
8.1.1 Object reassembly

The object reassembly unit should try to reassemble all MOT objects as soon as possible. Preferably the MOT decoder
should be able to decode all MOT objectsin paralel, i.e. useal MOT segmentsthat are successfully received.

To improve the acquisition time of the broadcast MOT objects, the MOT decoder should also be ableto use MOT
segments received before an MOT directory could befirst reassembled (at MOT decoder start-up) aswell asMOT
segments of new/ updated MOT objects received before the updated MOT directory could be successfully reassembl ed,
see sub clause C.3.4.1.

8.1.2 Object validity

Assuring object validity means that only those objects are presented to the user, that the content provider wantsto be
presented at this point in time.

ETSI

48 draft EN 301 234 V2.1.1 (2004-08-12)

If the user application decoder requests an object, then the standard behaviour of an MOT decoder will beto check if the
requested MOT object is part of the current MOT directory. The MOT decoder will then check if the current version of
the requested MOT object is already reassembled and if the MOT objectsisvalid; in this case the MOT decoder will
forward thisMOT object to the user application decoder.

MOT parameterswill assist the MOT decoder answering the following questions:
1. How doesthe MOT decoder know if an MOT object is part of the current directory?

2. How doesthe MOT decoder know if an available MOT body can be forwarded to the user application decoder?

Answer to question 1: Aslong asthe MOT decoder receives MOT directory segments all thetime, it is easy to determine
if an MOT object is part of the current MOT directory. As soon as we take into account that there might be no or just
little reception, thisissue gets more complex. Receivers might experience bad reception, receivers might get outside of

the reception area (e.g., if thereceiver isin asubway train or too far away from the transmitter) or receivers might be
tuned to another ensemble. In all these cases the MOT decoder is unable to reassembl e the currently broadcast MOT
directory and may even be unable to detect if the MOT directory has changed at all.

Note that to detect achangeto the MOT directory the MOT decoder just needs to receive asingle MOT directory
segment. By checking its Transportld the MOT decoder will detect if there was a change to the MOT directory.
Successful reassembly of the full updated MOT directory is needed in order to be ableto tell which MOT objects were
affected.

Sincethe MOT decoder might have no chanceto verify if an MOT object is still broadcast the content provider can
indicate how long an MOT object can still be considered valid after reception islost. Absolute and relative expire times
assure that no outdated content is presented to the user.

NOTE: Thereisafundamental difference between object management (list of objects provided by the MOT
directory) and object expiration (provided by the MOT parametersExpi r at i on and
Def aul t Expi r ati on). Aslong asthe MOT decoder receivesthe MOT directory, it will reliably know
which objects are valid. Since the transmission side is not permitted to transmit outdated objects, every
object listed in the MOT directory isimplicitly valid.
But if the MOT decoder no longer receives the MOT directory, the MOT decoder has no meansto tell if an
object is still part of the MOT directory. Therefore the MOT parametersExpi r at i on and
Def aul t Expi r at i on can be used to tell the MOT decoder how long an object can be considered
valid once the MOT directory isno longer received (and the MOT decoder can no longer verify that the
object isstill valid).

MOT objectsthat are no longer part of the MOT directory shall be removed from the MOT decoder cache.
Expired objects on the other hand shall not be presented any more, they do not necessarily have to be
removed, see sub clause C.3.5.1.

For a description of absolute and relative expire time parameters see sub clause 8.1.2.1. The support of the MOT
parameters Expi r at i on and Def aul t Expi r at i on ismandatory for all MOT decoders that use caching.

Answer to question 2: Two MOT parameters help the MOT decoder to determineif an already available MOT body can
be forwarded to the user application decoder. The MOT standard requires that the current version of an MOT object is
forwarded to the user application decoder, but the content provider can permit the MOT decode to use an older version
of an object until the current version is successfully received.

If the header information or the segmentation of an MOT object is changed then a change of the Transportld of this
object isrequired. The MOT parameter Uni queBodyVer si on indicatesif the MOT body of an MOT object
(identified by itsCont ent Namne) isthe same as the formerly received MOT body of thisMOT object. If the MOT body
isthe same then no reassembly of the MOT body is necessary and the already available MOT body can be used. This
MOT parameter is especially useful for MOT decoders that use persistent caching. For details regarding thisMOT
parameter see 8.1.2.2.

If MOT objects are updated, an updated version of the MOT directory will be broadcast. As soon asthe MOT decoder
successfully reassembled the updated MOT directory it will detect which MOT objects were updated. From the moment

ETSI

49 draft EN 301 234 V2.1.1 (2004-08-12)

the MOT decoder detected anew version of an MOT object it could still take some time until the new version of this
MOT object is successfully reassembled, seefigure 32.

| | |
>
| | | t
t b b
t,- new MOT directory t;: MOT decoder finishes t,: MOT decoder finishes
isbroadcast indicating reassembly of new MOT reassembly of updated MOT
updated MOT bodies directory bodies
'l

During this period the MOT decoder is aware that some
MOT bodies are outdated, but it could not yet reassemble
the current (new) version of these MOT bodies

Figure 32: Delay between detecting changes to the data carousel and receiving the current (new)
data

The MOT directory extension parameter Def aul t Per mi t Qut dat edVer si ons and the MOT header information
parameter Per mi t Qut dat edVer si ons indicateif an already available older version of an MOT object may be used
until the current version of the MOT body has been received, see sub clause 8.1.2.3.

It isrecommended that MOT decoders support both parametersPer mi t Qut dat edVer si ons and
Uni queBodyVer si on.

8.1.2.1 MOT expire time handling

If the MOT decoder provides "MOT caching support”, then support of the MOT parametersExpi r ati on and
Def aul t Expi r at i on ismandatory.

The MOT parametersExpi r ati on and Def aul t Expi r at i on are used to indicate an absolute or arelative expire
time of an MOT object. An absolute expiretimeisused, if the (absolute) time when the object expiresisknownin
advance (e.g., for an advertisement).

A relative expire timeis used to indicate the maximum time span an object is considered valid after the last time the MOT
decoder could verify that this object is still broadcast. This parameter can for instance be used for news articles that
should be presented as long as they are broadcast. If reception islost, then they can still be presented; but they will not
be presented if reception islost for more than the indicated period specified by the content provider.

A relative expire timeisfor instance used for regularly updated data applications, whereitis not known in advance when
an object expires (e.g. when atraffic information should be removed). Absolute trigger times could theoretically be used
and adjusted at every update to the data carousel. But every change to MOT header information causes a change to the
Transportld, therefore such behaviour would cause removal-and-reassembly of the object's body on simple MOT
decoders. Simple MOT decoders assume that in case of achange to the Transportld also the object's body is changed
and therefore they reassembl e the (same) MOT body from scratch.

EXAMPLE: A traffic information data application with an update interval of e.g. 5 minutes will usually set the
relative expire time to amultiple of the update interval of the data carousel; e.g. to 15 minutes. So
traffic information can still be browsed in the underground, but if the MOT decoder can not validate
for more than 15 minutes that the traffic information is still broadcast (i.e., the MOT decoder
receives no MOT directory), then the traffic information will no longer be presented.

Annex E gives an example of the use of relative expire times.

Every time an MOT object is requested by the user application decoder, the MOT decoder shall evaluate the
Expiration / Default Expirati on parametersasfollows:

Firstthe MOT decoder checksif the MOT object hasthe MOT header information parameter Expi r ati on. If it
has, its value is used and this evaluation process ends.

ETSI

50 draft EN 301 234 V2.1.1 (2004-08-12)

Then the MOT decoder checksif the MOT directory extension parameter Def aul t Expi r at i onisavailable. If it
is, itsvalueis used and this evaluation process ends.

If neither the MOT header information Expi r at i on for the object nor adefault value in the MOT directory
extension parameter Def aul t Expi r at i on isavailable, then the object never expires.

If the above evaluation yields an absolute expiretime (i.e., the size of the datafield is 4 or 6 bytes), then the MOT
decoder compares the given absolute expire time with the current time. If the object is not yet expired, the MOT decoder
will forward the M OT object to the user application decoder.

If the above evaluation yields arelative expiretime (i.e., the size of the datafield is 1 byte), then the MOT decoder adds
the given relative expire time to the last time the MOT decoder got a segment of the current MOT directory. The MOT
decoder compares the resulting time with the current time. If the object is not yet expired, the MOT decoder will forward
the MOT object to the user application decoder.

A battery powered real time clock isrequired for persistent caching so that expire times can be checked even if thereis
no DAB reception at al.

The MOT decoder is not required to delete an expired object (see also annex C); but it shall no longer provide this object
to the user application decoder.

If the content provider explicitly gives expire times, then no MOT decoder shall forward expired MOT objects to the user
application decoder. It is not the receiver manufacturer to decide if outdated content should be preferred over no content
at all. Thisisthe content provider's prerogative.

NOTE: For some user applications the content provider might choose to explicitly indicate the authoring date and
timeinside the transmitted content (e.g., aBWS might include atime stamp for every news article). In this
casethe user can see how newsworthy the content really is. However, if the content provider does not
want outdated content to be presented to the user even in case of reception loss, he must be ableto rely
on the automatic and reliable object expiration done by the MOT decoder. It isclear that it can't be the
user's duty to verify the time stamp of every information received viaDAB. That is the reason why the
handling of object expiration is mandatory for caching MOT decoders.

8.1.2.2 Unique MOT body version

If the MOT decoder getsanew MOT directory it checks for every MOT object if it usesthe same Transportld in the new
MOT directory. If it does, then the MOT decoder knows that it is the very same object (header information and body) as
it was broadcast before.

If the Transportld of the MOT object differs, this could be caused by
achange to the header information (e.g. achanged MOT parameter Expi r at i on)
achangeto the MOT body
differing segmentation size

It isvery helpful for the MOT decoder to know if the change of the Transportld was made because of some change to
the MOT header information or if also the MOT body was changed. In the latter case the MOT decoder hasto re-
assemble the current (new) version of the MOT body. Thiswill take some time and thus increase the access time for the
user application.

This parameter Uni queBodyVer si on helpsthe MOT decoder to determineif an aready available (i.e., already
received) MOT body still hasthe very same content even if the Transportld for thisMOT object has been changed in
the current (new) MOT directory. If this parameter is used by the content provider and evaluated by the MOT decoders
then changesto MOT header information can be made without implicitly invalidating the MOT body of an MOT object
(and thus causing reassembly of the MOT body).

This parameter Uni queBodyVer si on uniquely identifiesaversion of the body of an MOT object (identified by a
Cont ent Nan®). If the body of an MOT object is changed, the parameter Uni queBodyVer si on (if broadcast) of the

ETSI

51 draft EN 301 234 V2.1.1 (2004-08-12)

MOT object shall be changed. The MOT encoder shall never use the same value for the parameter

Uni queBodyVer si on (if broadcast) for an MOT object unlessit refersto the very same body content for thisMOT
object (identified by aCont ent Nane). Because Uni queBodyVer si on uniquely identifies aversion of an MOT
body, this parameter is also used to supports persistent caching of MOT objects where MOT decoders need to reliably
determineif an MOT body in the persistent cache is the same asthe MOT body currently broadcast.

To determine if an already available version of an MOT body has exactly the same content as the currently broadcast
version of the MOT object the MOT decoder shall compare the parameter Uni queBodyVer si on aswell asthe
parameter Body Si ze. If both parameters have the same value for old and new MOT object version, then the MOT
decoder may safely assume that the body content is exactly the same.

Two MOT objects (i.e., having two different Cont ent Nanes) that have the same val ue for the parameter

Uni queBodyVer si on do NOT haveto have the same body content. The parameter Uni queBodyVer si on shall
only be used to compare two versions of one MOT object (i.e., the Cont ent Name of the two versions must be the
same).

If the parameter Uni queBodyVer si on isnot available for both versions of an MOT object then the MOT decoder
can not reliably determine if two versions have the same body content. In this case the MOT decoder shall assume that
the body content differs when it detects that the Transportld was changed.

An MOT decoder that does not support this parameter Uni queBodyVer si on shall also assume that the body
content differswhen it detects that the Transportld was changed (thisis the default behaviour of the MOT decoder

anyway).

Examples how the values for the parameter Uni queBody Ver si on could be managed by the content provider:

the parameter istreated as a 32-bit unsigned binary version number. For every new version of an MOT object
the MOT encoder increments the version number for this object.

the content provider uses a 32-bit data field that holds the date/time when the object was created. It must be
assured that no two different versions of an object are created having the same time stamp. If aversion of an
object has exactly the same content as an older version, its MOT parameter Uni queBodyVer si on could be
set to the same value the older version had.

The parameter Uni queBodyVer si on isused exclusively to determineif two versions of an object have the same
body content. This parameter shall not be used to derive an order (e.g., age of an object’ sversion)!

Every receiver that supports the parameter Uni queBody Ver si on shall also support the parametersExpi r at i on
and Def aul t Expi r at i on which are mandatory for "MOT caching support".

8.1.2.3 Temporarily using outdated MOT bodies

The MOT directory indicates the versions of all MOT objects within the data carousel so that the MOT decoder can
assure a consistent set of objectsat all times.

Usually a consistent set of objectsisrequired. E.g. if anews content provider broadcasts an HTML pagewith aninline
image and later updates both HTML page and inline image (i.e. keeping the same Cont ent Nane for the HTML page
and the inline image) with other news, then the MOT directory assures that the MOT decoder knows which version of
the HTML object and which version of the inline image belong together and the MOT decoder can assure that news will
never be presented with the wrong inline image.

If consistency isrequired, then the MOT decoder is not permitted to provide a different version of an MOT object than
indicated inthe MOT directory (i.e. an earlier received MOT object with the same Cont ent Nane). The MOT decoder
has to wait until the current version of the object isreceived. So if the HTML page withthe current football scoresis not
yet received the MOT decoder is not permitted to present the old object during the time until the new object is received.
The MOT decoder must therefore remove an object from its cache as soon as it detects that a different version of an
object (with the same Cont ent Nane) is broadcast.

ETSI

52 draft EN 301 234 V2.1.1 (2004-08-12)

The MOT header information parameter Per mi t Qut dat edVer si ons aswell asthe MOT directory extension

parameter Def aul t Per i t Qut dat edVer si ons use adatafield of one byte. A value of 0 indicates that the MOT
decoder may not use any other version of an object than the current (new) one. If the current (new) version of the MOT
object is not yet avail able when requested by the user application decoder, then the MOT decoder shall NEVER use an
old version of thisMOT object. Any value other than 0 means that the MOT decoder may use ANY older version of an
object (provided that this version of the object has not expired) until the current (new) version of the object isreceived.

The parameter Def aul t Per mi t Qut dat edVer si ons used within the new MOT directory defines the default
behaviour for the objects within the data carousel. An MOT header information parameter
Per mi t Qut dat edVer si ons can set adifferent behaviour for asingle MOT object.

For every updated MOT object the MOT decoder shall evaluate the Per mi t Qut dat edVer si ons/
Def aul t Per mi t Qut dat edVer si ons parametersasfollows:

First the MOT decoder checksif the MOT object hasthe MOT header information parameter
Per m t Qut dat edVer si ons (inthecurrent (new) MOT directory). If it has, its value is used and this evaluation
process ends.

Then the MOT decoder checksif the MOT directory extension parameter
Def aul t Per mi t Qut dat edVer si ons isavailable (in the current (new) MOT directory). If itis, itsvalueis
used and this evaluation process ends.

If neither the MOT header information parameter Per i t Qut dat edVer si ons for the object nor adefault value
inthe MOT directory extension parameter Def aul t Per i t Cut dat edVer si ons isavailable, thenavalueof 0
(it isnot permitted to use outdated versions of any object) shall be used.

If the above evaluation yields avalue other than 0 then the MOT decoder is permitted to provide older and not yet
expired versions of MOT objects (i.e. having the same Cont ent Namne) from its cache until the current version of the
MOT object is successfully received. The current (new) version of the MOT object shall then replace the older version
assoon asit issuccessfully received.

The MOT decoder shall never provide aversion of an object that is already expired, even if the MOT decoder is
permitted to provide outdated versions of an object!

Use of avalue other than O (outdated versions of an object may be used) for the parameter

Per m t Qut dat edVer si ons impliesthat the content provider uses the same Cont ent Nane for an MOT object if
the MOT object isupdated. If the content of an MOT object can not be considered an update of an MOT object then the
MOT object shall get anew Cont ent Nane. Since MOT decoders might use persistent caching the content provider
must assure that a Cont ent Namne is not reused unless it can be considered an update for ALL earlier (and not yet
expired) version of thisMOT object.

The default behaviour of MOT directory mode assures consistency. |f neither the MOT directory extension parameter
Def aul t Per mi t Qut dat edVer si ons nor the MOT header information parameter Per i t Qut dat edVer si ons
isavailable for an MOT object then the MOT decoder shall NOT use an older version of the object.

If an MOT decoder does not evaluate the Def aul t Per m t Qut dat edVer si ons/ Per m t Qut dat edVer si ons
parametersit shall never present older versions of an MOT object.

Since little or no consistency requirements will usually provide a better user experience the content provider should try
to set up his user application so that consistency requirements are aslittle as possible (i.e., whenever possible, the
content provider should permit to temporarily use an outdated version of an MOT object).

If MOT consistency isnot required (i.e., outdated versions of objects may temporarily be used), then care has to be
taken with respect to receivers that use persistent caching. The use of expiretimesis highly recommended for content
providers, see sub clause 8.1.2.1.

If an outdated version of an MOT object may temporarily be used, then the ENTIRE MOT OBJECT shall be used until
the current (new) version of the MOT object is successfully reassembled. No MOT decoder shall use an outdated
version of the MOT body together with the current (new) version of the MOT header information! See clause C.3.5.1.1
for implementation tips.

ETSI

53 draft EN 301 234 V2.1.1 (2004-08-12)

Every receiver that supports the parametersDef aul t Per mi t Qut dat edVer si ons/
Per m t Qut dat edVer si ons shall also support the parameter Expi r at i on and Def aul t Expi r ati on; the
|atter two parameters are mandatory for "MOT caching support”.

8.1.3 Object management

If the MOT decoder does not have enough cache memory to hold all MOT objects within the current MOT directory it
must use some strategy to decide which objectsit will keep in its memory and which MOT object to removein case
memory is needed.

The MOT decoder will try to keep those MOT objectsinits cache that are "most likely" requested by the user
application decoder in order to minimize the average access time.

The MOT parameter Pri ori t y indicates the content provider's default storage priority. An MOT decoder should
initially prefer MOT objects with high priority to MOT objects with lower priority. Usually a caching strategy will take
into account the priority as assigned by the content provider as well as user preferences. This meansthat if the memory
management can get an indication of the user's preferences or alist of objects that will most likely be needed by the user
from the user application decoder (e.g., in case of aBroadcast W ebsite all the HTML pages that can be reached from the
currently displayed HTML page), then this information will most likely have stronger impact on the memory management
strategy than the (static) information provided by the content provider.

The MOT parameter Ret r ansni ssi onDi st ance indicates the maximum time between two retransmissions of an
object. The MOT decoder can take this value as an indication how long it will take to reassemble an MOT object (taking
into account that several retransmissions of an object might be needed in case of reception problems). Note that a
strategy that prefersto cache rarely broadcast objectsto objects that are retransmitted every few seconds might have
the undesired side effect that those objects that the content provider considers to be the most important ones (hence
they are broadcast so frequently) have the longest access times.

Note that the parameter Ret r ansni ssi onDi st ance indicates the (maximum) time between two retransmissions.
The actual time interval might be mu ch shorter. It is also important to note that this parameter does not indicate thetime
interval between reception of the MOT directory and reception of the MOT body. It indicates the time between two
MOT body retransmissions.

ETSI

54 draft EN 301 234 V2.1.1 (2004-08-12)

Annex A (normative):
Comparing ContentNames

This'compare' function is needed if the MOT directory extension parameter Sor t edHeader | nf or mat i on insidethe
MOT directory signalsthat its header information is sorted in ascending order of the parameter Cont ent Nane within
every header information.

When sorting the header information a function assuring the same sorting order as the following function shall be used
to compare two Cont ent Nanmes. The same function will also be used inside the MOT decoder to compare an old MOT
directory withthe currently received one.

Thereference function is specified in C code:

| *
conmpar e:

the pointers cnl _ptr and cn2_ptr point to the "character field" (sequence of
bytes) of the ContentName (i.e., the character set indicator and the rfa bits
are not conpared and does not influence sorting)

returns a negative nunber if cl < c2;
returns 0 if both ContentNanmes are the same (this should never happen)
returns a positive nunber if cl > c2

*/

int conpare (const unsigned char *cnl ptr, unsigned int cnl_length,
const unsigned char *cn2 _ptr, unsigned int cn2_ | ength)

{
int ii, diff;
int mn = cnl_length;
if (cn2_length < nmin) mn = cn2_I|ength;
for (ii =0; ii <mn; ii++)
{
diff = cnl ptr[ii] - cn2_ptr[ii];
if (diff !=0) return diff;
}

if (cnl_length < cn2_length) return -1;
if (cnl_length > cn2_length) return 1;

/* both strings are equal */
return O,

ETSI

55 draft EN 301 234 V2.1.1 (2004-08-12)

Annex B (informative):
User application definitions and MOT

Every user application that uses MOT hasto defineif it uses
MOT header mode or
MOT directory mode

If the user application needs user application specific MOT parameters or MOT directory extension parameters, it has to
define their meaning and encoding and assign a Parameterld. Different user applications might assign totally different
meanings to the same Parameterld. The meaning and encoding of user application specific parameters depends on the
user application being decoded.

If MOT directory modeis used and MOT directory compression is permitted by the user application definition, then the
user application also has to define which compression methods for the MOT directory are supported.

For every parameter the user applications hasto specify if
the parameter is optional or mandatory for the content/service provider
the parameter is optional or mandatory for the MOT decoder / user application decoder
the parameter can occur once or multiple times per MOT object

there are some restrictions on the permitted values of the parameter (e.g., arestriction on the length or the
permitted charactersinside a Cont ent Name or on the permitted compression data formats of the parameter
Conpr essi onType).

The gzip compression data format supports multiple gzip window sizes that determine the memory requirements for
decompression. If gzip compression is permitted for MOT directory compression and/or MOT body compression, then it
is also necessary to specify thelist of permitted gzip window sizes.

If MOT header mode is used the user application hasto indicate if HeaderUpdates are permitted and which MOT
parameters will be updated.

For some MOT functionality availablein MOT directory mode such as"caching" or "conditional accesson MOT level”,
more than one parameter is needed. So usually the complete functionality including al its parameters will be optional or
mandatory. The user application should not explicitly indicate which caching or conditional access parameters areto be
supported; it should just mention the functionality.

It is recommended for every user application definition to permit the MOT functionality "caching" — if not mandatory,
"caching" support should at |east be optional for both content provider and MOT decoder.

It isrecommended for every user application definition to permit the use of conditional accesson MOT level. The
minimum requirement for every MOT decoder isthat it shall always check if the MOT parameter CAl nf o issignaled for
an MOT object. Even if the MOT decoder does not support conditional access on MOT level, it does know that the
presence of the MOT parameter indicates a scrambled MOT body.

Every user application definition should explicitly state that all MOT decoders shall check for the MOT parameter
Conpr essi onType. Every MOT decoder should at least be able to detect and discard all MOT bodies it can not
uUNCOMPress.

Likethe MOT parameters CAl nf o and Conpr essi onType, al user application specific parameters that change the
encoding of the MOT body (i.e., the MOT body can not be processed if this user application specific parameter is
signalled) also need to be mandatory for the MOT decoder / user application decoder.

User applications that foresee fast changes to the data carousel should require collecting of MOT body segments whose
Transportlds are not (yet) listed in the current MOT directory (see sub clause C.3.4.1 and annex F).

ETSI

56 draft EN 301 234 V2.1.1 (2004-08-12)

In addition to the MOT related settings every user application definition also hasto define how the user applicationis
signalled in the FIC (FIG0/13). A user application identifier needs to be defined and the user application specific data (if

any).
If auser application supports different profiles, then the list of user application profiles supported by the content
provider should be carried in the User Application Datafield in FIG0O/13. If the MOT parameter Pr of i | eSubset

should be used, then the profile ids of all supported profiles must be 8-bit unsigned binary numbers that should be
sorted in ascending order within the User Application Datafield.

ETSI

57 draft EN 301 234 V2.1.1 (2004-08-12)

Annex C (informative):
Model of an MOT decoder and its interfaces

The model describes the functionality of the MOT decoder on different levelsincluding the interfacesto aDAB receiver
(providing a stream of MSC data groups) and the terminal (running an MOT based user application decoder), see also
figure 1. Real implementations may be quite different, optimised according user application specific needs and receiver
design constraints etc.

The data flow up to the user application decoder and the interfaces between all the levels described in this clause are
summarized in figure 33.

User application *
User application
Level dae?:gder Terminal
A
MOT object
Object management
Object Level
L . MOT
Bodies; directories or headers T data
Reassembly unit decoder
A
Segmentation Level MOT Segments | (+ additional informati on)
Data Group Decoder
Data group Level T MSC data groups T
Packet Mode PAD
decoder decoder
Network Level T T
Packets X-PAD data subfields

Figure 33: General description of a MOT decoder and its interfaces

Figure 34 explains the functionality of the MOT directory mode decoder in detail.

Note that the object management also performs caching of the MOT bodies.

ETSI

58 draft EN 301 234 V2.1.1 (2004-08-12)

User application + -
User application
Level .
decoder Termina
A
MOT object
Object management
Object Level directory MOT
Bodies, directories T Bodies
v
Reassembly Unit MOT
data
Tida] decoder
Tidb .
Tldc e Tidm
MOT body MOT directory
Segmentation Level MOT Segments | (+ additional information)
Data Group Decoder
Datagroup Level
MSC data groups
Packet Mode PAD
decoder decoder
Network Level T
Packets X-PAD data subfields

Figure 34: General description of a MOT directory mode decoder and its interfaces

Figure 35 explains the functionality of the MOT header mode decoder in detail.

Note that object management isvery simple. Inconing MOT objects are just forwarded to the user application decoder
as soon as they are fully reassembled from their MOT segments. Thereisno MOT object caching in MOT header mode.

ETSI

59 draft EN 301 234 V2.1.1 (2004-08-12)

X

User application A.)
Level User application
decoder Termina
MOT object T

Object management
Object Level header

Bodies, headers T
Reassembly Unit MOT
data
]] decoder
L | L |
e Tidx e Tid x
MOT body MOT header
Segmentation Level MOT Segments? (+ additional information)
Data Group Decoder
Data group Level
MSC data groups
Packet Mode PAD
decoder decoder
Network Level T
Packets X-PAD data subfields

Figure 35: General description of a MOT header mode decoder and its interfaces

C.1 Network level

At the network level packets and/or X-PAD data subfields are processed as described in sub clause 5.2 and compl ete
M SC data groups are passed to the data group level.

In packet mode, the packet address hasto be used to identify a particular service component within a subchannel. The
packets are collected by taking into account the packet Continuity index. The length of the data group is derived from
the First/Last flag and the Useful datalength in the packet headers. The validity of each packet is verified by the
evaluation of the packet CRC.

In X-PAD mode, the X-PAD application typeis used to identify all X-PAD subfields belonging to the user application.
The MSC data group length is derived from the DataGroupL engthlndicator (X-PAD application type 1) immediately
preceding the start of the M SC data group.

ETSI

60 draft EN 301 234 vV2.1.1 (2004-08-12)

C.2 MSC Data group level

Thevalidity of each single MSC data group is verified by the evaluation of the MSC data group CRC. An MOT decoder
needs to decode only data group types 1, 3, 4, 5, 6 and 7. If the MOT decoder does not support conditional accesson
MOT level, then it only needs to decode data group type 3, 4, 6 and 7. Data groups of type 7 are only decoded if the
MOT decoder supports MOT directory compression. Data groups with other Data group types are discarded. The MSC
data group data field contains a complete segment (including the segmentation header with RepetitionCount and
SegmentSize). The corresponding SegmentNumber and the Transportld are provided by the session header of the data
group. A CRC checked segment, together with its corresponding Segmentation header, Data group Type, Transportld
and SegmentNumber (see sub clause 5.1 for more details) will be passed to are-assembly unit working at the
segmentation level.

C.3 Segmentation and object level

The reassembly unit reassembl es segments with the same Transportld. The reassembly unit processes data groups with
Datagroup type 3 (MOT header), type 4 (MOT body), type 5 (scrambled MOT body and CA parameters), type 6
(uncompressed MOT directory), type 7 (compressed MOT directory) and type 1 (CA messages).

C.3.1 General description of the MOT decoder

The MOT decoder consists of two parts:
The reassembly unit reassembles MOT headers, MOT bodies and the MOT directory.

The object management control s the reassembly unit, stores the received objects and handles requests by the
user application.

In this general description two operation modes of an MOT decoder are described:
The MOT header mode: in this mode MOT header and body are processed (one MOT object at atime).
The MOT directory mode: in this mode the MOT directory and multiple bodies are processed in parallel.

Both reassembly unit and object management unit are in the same mode, either in MOT header mode or in MOT directory
mode. The mode is determined by the user application.

C.3.2 The reassembly unit
The functionality of the reassembly unit depends on its operation mode:
MOT header mode: in this mode MOT headers and bodies are reassembled (Data group types 3 and 4).

MOT directory mode: in this mode the MOT directory and bodies are reassembled (Data group types 6/7 and 4;
for CA also Datagroup types 1 and 5).

The reassembly unit continuously eval uates the incoming data groups carrying MOT segments. It shall be prepared that
in case of MOT directory mode several objects are transmitted applying interleaving, so that they are to be decoded in
parallel. It isnot required by the reassembly unit to evaluate the data group Repetition index or the RepetitionCount of
the segmentation header.

C.3.2.1 MOT directory mode

The MOT directory isreassembled and forwarded to the object management. If the MOT directory isforwarded, its
Transportld is stored inside the reassembly unit. From now on all MOT directory segments transported with this
Transportld are discarded, since this MOT directory is already successfully reassembled. If an MOT directory segment
isreceived with adifferent Transportld this means that the MOT directory is updated and therefore the new MOT
directory is reassembled and forwarded and its Transportld stored.

ETSI

61 draft EN 301 234 V2.1.1 (2004-08-12)

The object management orders the reassembly unit to reassemble MOT bodies. It is up to the object management to
assure that there is enough memory to store these bodies and still reassemble and forward anew MOT directory.

An MOT decoder that does not support conditional accesswill not order reassembly of scrambled MOT bodies.

C.3.2.2 MOT header mode

When an MOT header isforwarded (to the object management), itsTransportld is kept inside the reassembly unit. From
now on al MOT header segments with thisTransportld can be ignored, because they are already known by the object
management. If anew Transportld is detected (data group type 3 or 4), then the MOT header mode decoder removesall
MOT header and body segments received so far (no matter if they belong to an already forwarded MOT object or not)
and reassembles the MOT header of the new MOT object.

The object management orders the reassembly unit to reassemble the MOT body. It is up to the object management to
assure that there is enough memory to store the body and still reassemble and forward anew MOT header.

C.3.2.3 Segmentation of MOT bodies

Reassembly of MOT bodies isindependent from the mode the reassembly unit isin. If the object management requests a
body, the reassembly unit gets a request indicating which bodies (one body in case of MOT header mode; possibly
multiple bodiesin case of MOT directory mode) are to be reassembled. This request will include the Transportld, the size
of the bodies, an indication if the body is scrambled (MOT directory mode only) and may include also the SegmentSze
(if giveninthe MOT directory). The reassembly unit can thus allocate memory for the requested bodies.

The Transportld is not only used to reassemble all segments of an MOT header / MOT directory or an MOT body of an
MOT object, but also to establish the link between header information and body and to link them to the related CA
messages, if applicable. If the reassembly unit is ordered to reassemble abody, then it shall collect data groups of type 4
(unscrambled body) or data groups of type 5 and 1 (scrambled body/CA messages) of the indicated Transportid.

C.3.3 The object management unit

The object management stores objects and permits the user application to request objects, e.g. by their Cont ent Nane.
It isthe object management that eval uates the header information of reassembled MOT headers or MOT directories
(depending on the operation mode) and orders reassembly of MOT bodies.

According to the model described in this clause, it is the object management that orders the reassembly unit to decode
the MOT bodies. The reassembly unit will only reassemble MOT bodies requested by the object management.

The functionality of the object management depends on its operation mode.

C.3.3.1 MOT directory mode

In case of MOT directory mode the object management can order the reassembly unit to reassemble multiple MOT
bodies. Depending on the memory capacity, caching strategies (e.g., object priority) and CA support of the MOT
decoder, the object management will determine the MOT bodies that are to be reassembled. The reassembly unit will then
process al MOT body segments of the requested MOT bodies as they are incoming, either sequentially one after the
other or interleaved, in parallel. Since the object management unit already knows the size of the bodies from the MOT
directory, it can assure that there is enough memory for the reassembly unit to hold all bodies reassembled in parallel,
and anew MOT directory (the size of the MOT directory is not known in advance).

In MOT directory mode, the reassembly unit will inform the object management after the MOT directory is completely
reassembled. The object management decompresses (if applicable) and processes the MOT directory and then orders the
reassembly unit either to reassemble all incoming bodies or- in case of memory shortage - to select the specific objects
that are to be reassembled, e.g. by starting to request first the entry object(s) of the data carousel or objects with ahigh
Pri ority parameter until all objects have been received. If there is not enough memory to hold all objects within the
data carousel, the object management uses a caching strategy that determines which objects should be stored. A very
simple caching strategy would require the reassembly unit to reassembl e only the body of the object that is currently
requested by the user application and to store these bodies. A more advanced strategy will try to reassemble bodies
before they are requested by the user application and thus reduce access time.

ETSI

62 draft EN 301 234 vV2.1.1 (2004-08-12)

If anew directory isforwarded by the reassembly unit, the object management first checksif it isacompressed MOT
directory. If the MOT directory is compressed the object management de-compresses it. Then the object management
compares the old directory and the new one and removes all objects from its cache that are no longer signalled within the
directory (i.e. their Cont ent Nanmes are no longer present in the new MOT directory) or that have been updated (i.e. a
different Transportld is used for the same Cont ent Nare). It will then remove the objects that are no longer present in
the MOT directory and order the reassembly unit to reassemble new and updated MOT objects.

Comparing old and new MOT directory can be dramatically simplified if the header information within the MOT directory
is sorted by the Cont ent Nanes, see sub clause 7.2.4.1 for details.

The object management tries to reduce the object access time and thus includes some caching strategy.

Although the terminal will allocate the greatest part of its memory to the storage of the objects, it shall be prepared for

situations, where the size and number of objects exceeds the memory resources. In such cases, the object management
can make use of additional information on the relevance and availability of every object, i.e. by evaluating the caching

parametersin the header information of the MOT object for optimal use of memory.

An example showing the actions of the MOT decoder after it receives anew MOT directory can be found in Annex D.

C.3.3.2 MOT header mode

In MOT header mode the reassembly unit continuously checksfor MOT headers and forwards these to the object
management.

A received MOT header forwarded from the reassambly unit replaces any former MOT header in the object management
since thereisjust one MOT object at any time.

The object management will order the reassembly unit to reassemble the single MOT body described by the current
MOT header. Since the object management unit already knows the size of the body from the MOT header, it can assure
that there is enough memory for the reassembly unit to hold the MOT body and anew MOT header.

When the MOT body has been successfully and completely assembled in the reassembly unit, it is passed over to the
object management in the MOT decoder. The object management will then automatically forward the received MOT
object (header information and body) to the user application decoder.

After successful reassembly of an MOT object, incoming MOT segments with the same Transportld are discarded.

The MOT decoder shall pass any HeaderUpdate to the user application decoder. It isthe task of the user application
decoder to check if the HeaderUpdate refers to an object in the user application decoder and it is also the task of the user
application decoder to apply the header update.

C.3.4 Advanced MOT reassembly units

C.3.4.1 Collecting MOT body segments whose Transportld is not described in the MOT
directory

The MOT object management tells the reassembly unit which MOT bodies have to be reassembled and which MOT
bodies don't have to be reassembled. To do this, the object management will provide alist of all the Transportlds within
its current MOT directory and indicate for every Transportld if the MOT reassembly unit has to process MOT segments
having this Transportld (i.e., reassemble the MOT body) or if the reassembly unit hasto discard MOT segments having
this Transportld.

If the Transportld of areceived MOT body segment isin thelist provided by the MOT object management, then the
reassembly unit will process the MOT body segment as usual (i.e., the MOT segment is used to reassemble an MOT
body or it is discarded).

This sub clause only covers MOT body segments whose Transportld the MOT object management did not provide (i.e.,
because the MOT object management does not yet have the current MOT directory and therefore the object
management does not know the Transportlds of new or updated MOT objects).

ETSI

63 draft EN 301 234 vV2.1.1 (2004-08-12)

This sub clause not only explains how to improve start-up of the MOT decoder and robustnessin case of reception
errors during updates of the MOT directory. The mechanisms also permit fast changes to the data carousel (see annexF).

C.3.4.1.1 Start-up of the MOT directory mode decoder

When the MOT decoder startsup it will take awhile until the MOT directory is successfully received and forwarded to
the object management. If the reassembly unit discards all body segments until the MOT directory is successfully
received then the start of reassembly of MOT bodies can be significantly delayed.

An advanced MOT decoder can thusinclude asmall storage in the reassembly unit ("segment buffer") that collects all
MOT body segments received between start up of the reassembly unit and the order to collect certain (or all) MOT
bodies from the object management unit. If the object management unit tells the reassembly unit which MOT bodies it
should collect then the reassembly unit "replays" the already stored MOT body segments, flushes the storage and from
then on processes the MOT body segments as they are received.

| | >
t
to ty
t,» MOT decoder starts up; it t,: MOT directory successfully
receives MOT body and reassembled; object management orders
directory segments reassembly of certain (or al) MOT bodies
A
™~ T
reassembly unit collects reassembly unit replays
MOT body segmentsinto MOT body segments from
"segment buffer” "segment buffer"

Figure 36: Improved start-up of MOT decoder

Additional information regarding the collection of MOT body segments can be found in sub clause C.3.4.1.3.

C.3.4.1.2 Updates to the MOT directory

If changes to the data carousel are made, then the content of the MOT directory changes and therefore a new

Transportld isassigned to the MOT directory. After the changes to the data carousel the new MOT directory andthe
new and updated as well as the unchanged MOT bodies will be broadcast. The MOT decoder will continuously check
every received MOT directory segment and notice that MOT directory segments with anew Transportld are received.

Dueto reception errorsit could take quite awhile until the new MOT directory is successfully reassembled and
forwarded to the object management. If the reassembly unit discards all body segments until the new MOT directory is
successfully received then the start of reassembly of updated and new MOT bodies can be significantly delayed.

An advanced MOT decoder will thus have an interface that permits the object management to tell the reassembly unit for
al Transportlds within the current MOT directory what Transportlds the object management isinterested in and which
TransportldsitisNOT interested in. If MOT body segments are received with Transportlds that are not contained in the
current MOT directory (i.e., not at all mentioned by the object management) then the reassembly unit should assume that
achange to the data carousel has taken place. It should then collect the MOT body segmentsinto the "segment buffer”.
When the next MOT directory is successfully forwarded to the object management and the object management unit tells
the reassembly unit which MOT bodiesit should collect, then the reassembly unit "replays" the already stored MOT
body segments, flushes the "segment buffer" and from then on processes the MOT body segments as they are received.

ETSI

64 draft EN 301 234 V2.1.1 (2004-08-12)

| | >
t
to t1
t,- new body segments appear t,: MOT directory successfully
with unknown Transportld (not reassembled; object management orders
listed in current MOT directory) reassembly of certain (or al) MOT bodies
A A
—~
reassembly unit collects reassembly unit replays
MOQOT body segmentsinto MOT body segments from
"segment buffer" "segment buffer”

Figure 37: Improved performance in case of updates to the MOT directory

Additional information regarding the collection of MOT body segments can be found in C.3.4.1.3.

C.3.4.1.3 Collecting MOT body segments

The MOT reassembly unit automatically reassembles the MOT directory, but it is the task of the object management to
decide which MOT bodies should be reassembled at any given time. The MOT object management therefore provides a
list of ALL Transportldswithin the current MOT directory to the MOT reassembly unit. For every Transportld the
object management will indicate if its MOT body has to be reassembled or not.

On MOT decoder start-up, thislist will be empty (the object management simply does not know the current MOT
directory on start-up). Whenever the reassembly unit successfully rebuilds anew (the current) MOT directory, thisMOT
directory will be forwarded to the object management. The object management will decide which MOT bodies are to be
reassembled and indicate this to the reassembly unit.

Whenever an MOT body segment is received, the reassembly unit will first check the list provided by the object
management. If the Transportld of the MOT body segment is described by the list provided by the object management
then the MOT body segment will be processed asindicated in thelist (i.e., the MOT segment is used for MOT body
reassembly or discarded).

If the Transportld of the MOT body segment is not mentioned in the list, then the advanced reassembly unit will collect
the MOT body segment into the "segment buffer" (hoping that the MOT body segment can be used once the MOT
directory isreassembled and forwarded to the object management).

Depending on the available memory in the reassembly unit, more or less MOT body segments can be collected. To
collect all MOT body segments received in 5 minutes on a 64 kbps channel one would for instance need 2.4 Mbytes.
This number isworst case because it assumes that only MOT body segments with unknown (not in the list provided by
the object management) Transportlds are received and the current (new) MOT directory can not be reassembled. The
advanced reassembly unit will collect as many MOT body segments, asit is able to and may discard the oldest collected
MOT body segment in case anewly received MOT body segment needs to be collected and no more memory is available
for this purpose (i.e., the advanced reassembly unit must be able to do garbage collection).

The main task for the reassembly unit is the reassembly of MOT bodies. If there is not enough memory to collect MOT
body segments in addition to body reassembly, then the reassembly unit will always favour object reassembly.

To assure that no MOT body segments are collected and kept indefinitely, the reassembly unit shall not keep MOT body
segments longer than one hour (atimeout is necessary because a content provider might start reusing Transportlds after
awhile). It istherefore necessary to attach atimestamp to all collected MOT body segments.

NOTE: To save memory when collecting MOT body segmentsit ispossible to check if areceived MOT body
segment was already received and collected before into the "segment buffer”. In this case the newly
received MOT body segment replaces the earlier received MOT body segment. It might also be necessary
to adjust all time stamps attached to thisMOT body segment (the time stamps are needed for garbage
collection).

ETSI

65 draft EN 301 234 V2.1.1 (2004-08-12)

C.3.4.2 MQOT caching support: relative expire times (MOT parameters Expiration and
DefaultExpiration)

If the MOT decoder provides "MOT caching support”, then support of the MOT parametersExpi rati on and
Def aul t Expi r at i on ismandatory.

To support relative expire times the MOT reassembly unit needs to know the Transportld of the MOT directory currently
used by the object management unit. Therefore an interface between the reassembly unit and the object management is
required. Whenever the object management accepts anew MOT directory it will indicate the Transportld of the currently
used MOT directory to the reassembly unit.

Every time the reassembly unit getsan MOT directory segment (data group type 6 or 7) using thisindicated Transportld,
it will store the time the segment was received.

The reassembly unit will update the time when an MOT directory segment using the indicated Transportld was received,
even if the reassembly unit will then discard all MOT directory segments using the indicated Transportld (since the
MOT directory was already successfully reassembled).

If persistent caching is used, then the reassembly unit shall permanently store the Transportld and the reception time of
itslast received MOT directory segment. On restart of a persistently cached data application, the reassembly unit shall
not assume that Transportlds of MOT segments still correspond to the same MOT entity. Thereforeit shall NOT update
the reception time of the last received MOT directory segment. It shall wait until the object management indicates the
Transportld of the MOT directory currently inuse (i.e., it is necessary to assure that the MOT directory is still the same
that is was when the receiver was switched off; to do thisthe current MOT directory must be successfully reassembled
and processed by the object management) before it resumes normal operation (i.e., store the time the last MOT directory
segment with the given Transportld was received).

See sub clause C.3.4.3 for a code snippet that outlines the reassembly of the MOT directory; this code also includes
some lines to support the handling of relative expire times.

C.3.4.3 Acquiring both compressed and uncompressed MOT directories

If auser application permits both the compressed and the uncompressed MOT directory, then the MOT reassembly unit
must be able to reassemble the MOT directory no matter if the MOT directory is compressed or uncompressed or if both
the conpressed and the uncompressed MOT directory are sent alternately.

An uncompressed MOT directory is carried using M SC data groups of type 6; acompressed MOT directory iscarried in
data groups of type 7. If both compressed and uncompressed MOT directory are used, then they will have the same
Transportld for the same version of the MOT directory (i.e., theidentical directory content).

One way to acquire the MOT directory (transmitted compressed and/or uncompressed) is to try reassembling both
compressed and uncompressed MOT directory in parallel. Reassembly starts whenever anew Transportld for the MOT
directory is detected (no matter if in adata group of type 6 or 7). Then the parallel reassembly of both the compressed
and the uncompressed MOT directory isstarted using the Transportld of the MOT directory. The reassembly unit
forwards whatever directory isreassembled first to the object management and stops reassembly of both the compressed
and the uncompressed MOT directory until anew Transportld of the MOT directory is detected.

The above sol ution requires enough resources to reassembl e both the compressed and the uncompressed MOT
directory in parallel. A simpler solution is presented below. It permitsto reassemble the MOT directory without the need
to decode both the compressed and the uncompressed MOT directory in parallel (i.e., it saves the memory and code lines
that would be necessary if the reassembly unit tried to reassembl e the compressed and the uncompressed MOT

directory in paraldl).

Parallel decoding would of course be better (under certain circumstances the MOT directory could be available earlier).

An MOT reassembly unit that just eval uates data group type 6 (uncompressed MOT directory) will contain code
something like this pseudo code;

/'l the follow ng variable holds the Transportld of the currently
/'l reassenmbled MOT directory
int current_not_directory_transport_id = -1;

ETSI

66 draft EN 301 234 vV2.1.1 (2004-08-12)

/1 the following variable is used to know if the MOT directory
/1l using the above Transportld

/1 (current_not_directory_transport_id) is already

/'l reassenbled; in this case all MOT directory segnents

/1l can be ignored

bool not_directory_conpleted = fal se;

/1 the follow ng variable holds the last tinme an MOT directory segnent
/1 of the current MOT directory was received
time last_not_directory_segnent_received = 0;

/1 this function is called whenever a data group of type 6 is received.
process_not _directory_segment (MOT_segnent, unsigned short transport _id)

{

/1 Support for relative expire tines

/1

/1 get_not_transport _id_used by object_nmanagenment() will return the

/1 Transportld of the MOT directory currently used by the object managenent.
/1 This Transportld does not necessarily have to be the sane one as

/1 current_not_directory transport_id since the latter already changes when a

/'l reassenbly of a new MOT directory starts (but reassenbly could fail if
/'l reception is lost).
if (get_not_transport _id_used by object_managenment () == transport _id) {

/1 get current time and store it as the last tine an MOT segnent
/1l of the currently used MOT directory was received
| ast _not _directory_segnment _received = get_current_time();

}
if (current_not _directory transport_id != transport_id) {
/1 we got a new Transportld for the MOT directory, this
/1 nmeans that we have to rebuild the MOT directory from scratch
restart_not_directory_reassenbly();
/1 store the now used Transportld
current _mot _directory_transport_id = transport_id;
nmot _directory_conpl eted = fal se;
}

/1 check if the MOT directory was already reassenbl ed.
/1 In this case ignore the MOT segment
if (mot_directory_conpleted) { return; }

/'l process the currently received MOT directory segment.
add_not _directory_segnment (MOT_segnent);

/1 store information if MOT directory is already conpleted
mot _directory_conpleted = is_not_directory_finished();

/1 1f the MOT directory is now finished, then forward the
/'l new MOT directory to the reassenbly unit
if (mot_directory_conpleted) {

/1l forward MOT directory to object managenent

ETSI

67 draft EN 301 234 V2.1.1 (2004-08-12)

To permit reassembly of the compressed or uncompressed MOT directory (carried in data groups of type 6 or 7), the
function would now look something like (changesinitalic):

/1l the follow ng variable holds the Transportld of the currently
/'l reassenbled MOT directory
int current_not_directory_transport_id = -1;

/1 the follow ng variable holds the data group type of the MOT directory
/1 that is currently reassenbl ed
int current_dg_type;

/1l the following variable is used to know if the MOT directory
/1 using the above Transportld

/1 (current_not_directory_transport_id) is already

/'l reassenbled; in this case all MOT directory segnents

/1 can be ignored

bool not_directory_conmpleted = fal se;

/1 the follow ng variable holds the last tinme an MOT directory segnent
/1 of the current MOT directory was received (data group type 6 or 7!)
time last_not_directory_segnent _received = 0;

/1 this function is called whenever a data group of type 6 or 7 is received)
process_not _directory_segnment (MOT_segnent, unsigned short transport _id,

int dg_type)
{
/1 Handling for relative expire tinmes
11
/1 get_not _transport _id used by object nmanagenment() will return the

/1l Transportld of the MOT directory currently used by the object managenent.
/1l This Transportld does not necessarily have to be the sane one as
/1 current_not _directory transport_id since the latter already changes when a

/'l reassenbly of a new MOT directory starts (but reassenbly could fail if
/'l reception is lost).
if (get_not_transport _id _used by object managenent () == transport _id) {

/1l get current tine and store it as the last time an MOT segnent
/1l of the currently used MOT directory was received
| ast _not _directory_segnment _received = get _current _time();

}

if (current_not _directory transport_id != transport_id) {
/1 we got a new Transportld for the MOT directory,
/1 this neans that we have to rebuild the MOT directory
/1 from scratch
restart_not _directory_reassenbl y();

/!l store the now used Transportld
current _mot _directory transport_id = transport _id;
current _dg type = dg_type;
not _directory_conpl eted = fal se;
/1l check if the MOT directory was already reassenbled. In

/1l this case ignore the MOT segnent
if (nmot_directory _conpleted) { return; }

ETSI

68 draft EN 301 234 vV2.1.1 (2004-08-12)

/1l check if the data group type is needed
if (current_dg type !'= dg_type) {
/1 if we first received data group type 6 and now get an
/1 MOT segnent of data group type 7, then we switch to data group type 7.
/1 1f we're already using data group type 7, then we ignore
/1 data group type 6
if (current_dg type == 6) {
/'l we switch to the data group type 7,
/1 this nmeans that we have to rebuild the MOT directory
/1 from scratch
restart_not_directory_reassenbly();

/'l store the now used data group type
current _dg_type = dg_type; // will always be 7
}
el se {
/1l data group type is 6, but we're already reassenbling data group type 7
return; // ignore MOT directory segnent of type 6

}
}

/'l process the currently received MOT directory segnent.
add_mot _directory_segnent (MOT_segnent);

/] store information if MOT directory is already conpl eted
nmot _directory conpleted = is_not_directory finished();

/1 1f the MOT directory is now finished, then forward the
/1l new MOT directory to the reassenbly unit
if (nmot_directory _conpleted) {

/1 forward MOT directory to object managenent

}
}

The example code starts reassembly with whatever MOT segment is received first (MOT segment with data group type 6
or 7). When the MOT directory is completely reassembled, it will be forwarded to the object management and all further
MOT segments with this Transportld will beignored.

If reassembly started with an MOT segment of data group type 6 (i.e., the first MOT segment with anew Transportld
was from an uncompressed MOT directory) and aMOT segment with data group type 7 is received, then the reassembly
unit switches over to the reassembly of the compressed MOT directory (from then onignoring all MOT segments with
datagroup type 6). If anew Transportld for the MOT directory is detected, reassembly starts again with the data group
typethat is detected first.

This code snippet has no performance penalty (compared to parallel reassembly) if either compressed or uncompressed
MOT directory istransmitted. If both compressed and uncompressed MOT directory are used alternately, then the
worst-case scenario is arestart of the reassembly of an almost reassembled uncompressed MOT directory with the
reception of an MOT segment of data group type 7.

Alternately transmitting compressed and uncompressed MOT directory only makes sense for backwards compatibility to
simple receivers that do not support compressed MOT directories. In this caseit is sensible to send the compressed
MOT directory much more frequently than the uncompressed MOT directory (if the uncompressed MOT directory is
sent more frequently, then the MOT directory compression can not sensibly reduce the channel capacity needed for the
MOT directory). Therefore switching to data group type 7 should typically result in a quicker reassembly of the MOT
directory.

So this simple extension of the reassembly unit will usually havelittle or no performance penalty compared to parallel
reassembly of compressed and uncompressed M OT directory.

ETSI

69 draft EN 301 234 vV2.1.1 (2004-08-12)

C.3.5 Advanced MOT object management

C.35.1 MOT directory mode

When the object management unit gets anew MOT directory, it hasto compare the old MOT directory with the new
MOT directory. The comparison can be done very efficiently if the header information within both the old and the
current (new) MOT directory is sorted. In this case two sorted lists have to be compared and this is much more efficient
than the comparison of two unsorted lists.

Therefore the advanced MOT object management will sort the header information of the new MOT directory (if not
aready sorted) before it comparesits MOT objects with the (already sorted) old MOT directory.

The presence of the MOT directory extension parameter Sor t edHeader | nf or nat i on indicates that the header
information is already sorted so that the sorting step can be skipped.

When comparing the sorted MOT header information of the old and the current (new) MOT directory, the compare
function defined in Annex A shall be used.

After comparing the old and the new MOT directory the object management knows which MOT objects are updated (i.e.,
those MOT objects with the same Cont ent Name in old and current (new) MOT directory whose Transportld differs
between old and current (new) MOT directory). The MOT decoder will now try to determineif the signalled change to
the MOT object also affectsthe MOT body.

The MOT decoder will check if the MOT aobject (identified by the same Cont ent Nane) in both the old and the new
MOT directory providesthe MOT parameter Uni queBody Ver si on. If it does and the parameter's value and also the
valuefor Body Si ze isthe samein the old and the current (new) MOT directory, then the MOT decoder does not have
to rebuild the MOT body; it can use the old (and still valid) version of the MOT body (if already available in the cache).
The MOT decoder will nevertheless evaluate the (new) MOT header information (e.g. if an data structure outside the
MOT directory is used to keep the expire times of objects then this data structure might have to be updated).

NOTE: When the object management determines that only the object's header information was updated, but it still
has the identical body content, it could happen that the object's body is not yet fully reassembled. In this
caseit isuseful if the reassembly unit can be told to finish reassembly of the MOT body even with a
different Transportlid.

Continuing reassembly of an MOT body using a different Transportld is not trivial since adifferent
SegmentationSize could be used. A good and not too complex compromise seems to be a reassembly unit
that is able to continue reassembly if the SegmentationSize is the same and that restarts reassembly from
scratch if adifferent SegmentationSize for the MOT body is used.

M ore sophisticated reassembly units will be able continue reassembly even if a different
SegmentationSizeis used.

The default behaviour of the MOT decoder isto discard all bodies that have been updated (i.e. changed) and wait until
the current (new) version of the body isreceived (thusignoring the parameter Uni queBodyVer si on).

The MOT header information parameter Per mi t Qut dat edVer si ons (or if not available for the object, then the
MOT directory extension parameter Def aul t Per mi t Qut dat edVer si ons) inthe current MOT directory tellsthe
MOT decoder if it is permitted to keep the old version of an object (and to provide it to the user application decoder)
until the new version of the object is successfully received (see sub clause 8.1.2.3 for details). As soon as the current
(new) version of an object is successfully received, then it hasto replace to old one. Note that the user will usually prefer
to see older information than nothing at al, so that content providers will most likely permit to temporarily display
outdated content. Sub clause C.3.5.1.1 indicates how an advanced MOT decoder could implement MOT parameters

Per ni t Qut dat edVer si ons and Def aul t Per mi t Qut dat edVer si ons.

The MOT decoder shall NEVER provide expired MOT objects to the user application decoder. So even if the content

provider permits to present an outdated version of an object until the current (new) version of the object is received, it
must still be assured that the outdated version is not yet expired!

ETSI

70 draft EN 301 234 V2.1.1 (2004-08-12)

An MOT decoder that provides "M OT caching support" has to support object expiration (MOT parameters

Expi rati on and Def aul t Expi r ati on) . An absolute expire time requires the MOT decoder to check if an object
isexpired before it honours a request by the user application decoder. A relative expire time requires that the reassembly
unit stores the last time when a segment of the currently used MOT directory was received. Therefore the object
management has to inform the reassembly unit once it accepts the new MOT directory so that the reassembly unit knows
the Transportld it should look for.

If the user application decoder requests an MOT object, then the object management will thus first check if an expiretime
isgiven for the object.

If an absol ute expire time has been given, then the object is considered expired if the user application's request was
issued after the given absolute expire time.

If arelative expire time has been given, the object management will ask the reassembly unit when a segment of the
current MOT directory was most recently received. The object is considered expired if the user application's request was
issued after thistime plusthe given relative expire time.

If the MOT object isrequested and it is not expired, then the object management will forward the object to the user
application decoder.

Even though the MOT decoder shall never provide expired objects to the user application decoder it might sometimes be
sensible to keep MOT objectsin the cache even if they already expired.

Imagine a scenario where the MOT decoder collected some HTML dataand the user wants to browse through it in the
underground. Some traffic data might have atimeout of just some minutes (using relative expire times). Sincethe MOT
decoder might not receive anything in the underground, it will not provide the expired traffic information to the user
application decoder after the timeout expired. Once the user gets back to the surface and reception of the HTML data
continues, the MOT decoder will (after receiving the MOT directory) detect which of the traffic messages are still vaid
(i.e., which are still broadcast). Deleting all MOT objects once they expired would have delayed presentation of the data
once reception is available again. (Note that if the receiver was switched off, then the MOT decoder also has to support
the MOT parameter Uni queBodyVer si on and that this parameter must also be included in the MOT directory: once
reception isrestored, the parameter Uni queBodyVer si on will reliably tell the MOT decoder which MOT objects are
still valid).

The MOT directory contains object descriptions of all currently broadcast objects and their Transportlds, but it does
not signal when which body is broadcast. Therefore an object management strategy that reassembl es objects with the
highest priority first might have abad start-up time since all other objects broadcast before these objects areignored.
The reassembly unit might signal to the object management which body Transportlds are currently broadcast. E.g. if the
first segment (not necessarily SegmentNumber 0) of any body is received, this could be signalled to the object
management unit. The object management could then order the reassembly of this body.

Thetime when the first body segment isreceived and the Ret r ansmi ssi onDi st ance parameter of the object can
be used by the object management unit to predict the time of the next retransmission of the body. This permits advanced
caching strategies.

It isaso possible to evaluate the data group Repetition index (see clause 5.3.3.1in EN 300 401 [1]) or the
RepetitionCount of the segmentation header (see sub clause 5.1.1).

However, such additional processing by the reassembly unit and object management unit isjust optional.

C.3.5.1.1 Support of MOT parameters DefaultPermitOutdatedVersions and
PermitOutdatedVersions

If the content provider indicates that an older (and not yet expired) version of an MOT object can be used until the
current (new) version of an MOT object isreceived, then it is necessary to keep the entire MOT object (i.e., MOT header
information as well asthe MOT body) until the current (new) version of the MOT object is successfully reassembled.

ETSI

71 draft EN 301 234 V2.1.1 (2004-08-12)

One way to achieve thisis adata structure that holds all MOT objects that later on will be replaced by the current (new)
version of the MOT object.

Initially this data structure will be empty. Every time an update to the MOT directory is made, the MOT decoder will
check al current (new) MOT objects.

If an update to the MOT object body is signalled, then the MOT decoder will check if it is permitted to use older versions
of thisMOT object. If it is permitted and the MOT object isavailable in the cache (i.e., the MOT body is completely
reassembled), then this object is added to the data structure.

If an MOT object within the data structure is no longer signalled inthe MOT directory, then it will be removed from the
data structure.

Every timean MOT object (i.e., itsbody) is successfully reassembled, the MOT decoder will check if an older version of
thisMOT object isin the above data structure. If itis, the old version of the MOT object will be removed from the above
data structure.

If the MOT decoder is requested to provide an MOT object, then it will alwaysfirst check if the MOT objectisin the
above data structure. If itis, then the MOT decoder will check if the (old) MOT object has already expired. If it isexpired,
the MOT decoder will remove the MOT object from the above data structure. If the object is still valid it will be forwarded
to the user application decoder.

Garbage collection can regularly remove expired MOT objects from the above data structure.

An old (outdated) object that is added to the above data structure needs special handling of relative expire times. The
relative expire timeindicates how many minutesthe MOT objects should be considered valid after reception loss (or
more precise: after the validity of the MOT object can no longer be confirmed).

If the MOT parameter Per mi t Qut dat edVer si ons/Def aul t Per ni t Qut dat edVer si ons signalsthat an old
(outdated) version of an MOT object may be used while the current version is reassembled, then the relative expiretime
therefore indicates how many minutes the old (outdated) object might still be used at most.

MOT demands that from the instant in time anew version of an object is sent, the old version will no longer be sent.
Thereforeit isvery easy to determine the absolute expire time of an outdated MOT object if arelative expiretimeis
indicated for the object. The MOT object will expire that many minutes (as indicated by the relative expire time) after the
current (new) MOT directory (that caused the MOT object to be considered "outdated") was successfully reassembled.

Soif an MOT object is added to the above data structure, then the absolute expire time for thisMOT object is
determined by taking into account relative or absolute expire time of this object.

The MOT object management "keeps" an entire outdated object (body and header information), but in MOT directory
mode a user application might also put user application specific MOT parametersinto the MOT directory extension.
These user application specific parameters are only valid and available aslong asthe MOT directory carrying themis
available. They are not related to any particular version of any individual object. Therefore content providers shall only
permit "keeping" of an outdated version of an object, if no inconsistency between the information carried in the outdated
(old) MOT header information and the current (new) MOT directory can occur.

Aninconsistency could for instance occur if the user application uses parametersin both MOT header information and
MOT directory extension to efficiently code some data.

An exampleisthe use of adefault parameter value (carried in the MOT directory extension) that appliesto all MOT
objects unless aparameter in the MOT header information of an object explicitly sets a different value for this object.
Another exampleisaMOT directory extension parameter carrying a mapping table that permits to use short "keys" in the
MOT header information instead of long parameter values. The full (long) parameter value is determined by the user
application decoder by alook-up in the MOT directory extension parameter that maps the short key to the final parameter
value used by the user application decoder.

I'n both examples an inconsistency could occur if the datain the MOT directory extension is changed and an outdated

object is"kept". Therefore user applications that use this or a similar memory optimisation have to take care to address
this potential problem.

ETSI

72 draft EN 301 234 V2.1.1 (2004-08-12)

C4 User application level

The user application level requests objects from the MOT decoder (MOT directory mode) or gets every object as soon
asitissuccessfully received (MOT header mode) and presents them.

The specification of the user application level isnot apart of MOT.

The MOT decoder shall NEVER provide expired MOT objects to the user application decoder.

ETSI

73 draft EN 301 234 V2.1.1 (2004-08-12)

Annex D (informative):
MOT decoding in MOT directory mode (example)

This example shows the actions of the MOT decoder after it receivesan MOT directory. The MOT decoder startsfrom
scratch (i.e., there are no objects already available).

Tld isused as an abbreviation for Transportld. If the same Tld appears more than oncein the example, it isthe same
object, i.e. the same header and body.

MOT directory Actions to do Objects in the object
after reception management
of the MOT directory
Tid 100 = store objects with Tld
1,234 Tid 1
TId 2
Td1*a
TId 3
Td 2 “b Tid 4
'I'I d 3 1 C'”
Td4“d
Tid 101 . delete object with TId
1 Tid 2
" keep objects with Tid
TId 3
-I-Idzubn 2,3,4])
" store object with TId 5 TId 4
Td 3 “c” TId 5
Td4“d
'I-I d 5 113 e"
Tid 102 " delete object with
Tid 2 TId 3
" keep objects with
TId 4
Td 6 “b Tid3,4,5 _ _
" store object with TId 5
Tid 3 “c” Tid 6 Tid 6
Td4“d
TI d 5 1] e‘”
Tid 103 = delete objects with Tid
3,4 TId 5
= keep objects with Tid TId 6
-I-I d 6 “ bn 6, 5))
= store objects with Tld TId 7
Tld?“C" 7,8 Tld 8
'I-I d 8 113 d"
'I-I d 5 113 e”

ETSI

74 draft EN 301 234 V2.1.1 (2004-08-12)

Annex E (informative):
Example for evaluation of relative expire times (MOT
parameters Expiration and DefaultExpiration)

In this example the following assumptions are made:
At the beginning the Transportld of the current MOT directory is 0x1000

All requests by the user application decoder refer to the same MOT object. This object isaready availablein
the cache at 10:00:00.

Therelative expire time given for the requested MOT object is 15 minutes

Starting at 10:02:00 anew MOT directory with Transportld 0x1001 using 2 MOT directory segmentsis received.
The changein the MOT directory does not affect the MOT object requested by the user application (it still uses
the same Transportld in the new MOT directory). Not before 10:18:00 the MOT decoder successfully
reassembles the new MOT directory.

Thereis no reception between 10:02:01 and 10:17:59 and after 10:19:00.

Time MOT directory segment reception Object-request by user application decoder

10:00:00 An MOT directory segment with Transportld 0x1000
isreceived.

Set time of last received MOT directory segment to
10:00:00.

10:00:10 MOT object will expire at 10:00:00 + 15 minutes
(10:15:00); it is till valid now.

Return requested MOT object.

10:00:30 An MOT directory segment with Transportld 0x1000
isreceived.

Set time of last received MOT directory segment to

10:00:30.
10:00:45 MOT object will expire at 10:00:30 + 15 minutes
(10:15:30); it is till valid now.
Return requested MOT object.
10:02:00 An MQOT directory segment with Transportld 0x1001
isreceived. MOT directory with Transportld 0x1001
isnot yet completely reassembled.
The currently used MOT directory uses Transportld
0x1000. No change to the time of last received MOT
directory segment.
10:05:20 MOT object will expireat 10:00:30 + 15 minutes

(10:15:30); it is till valid now.

Return requested MOT object.

10:16:00 MOT object expiresat 10:00:30 + 15 minutes
(10:15:30); it isno longer valid now and therefore not

ETSI

75 draft EN 301 234 V2.1.1 (2004-08-12)

returned (but probably still kept in the cache until
validity of the object can later be re-confirmed)

Indicate that object is not available.

10:18:00 An MOT directory segment with Trangportld 0x1001
isreceived. MOT directory with Transportld 0x1001
is now completely reassembled and now used as the
current MOT directory.
Set time of last received MOT directory segment to
10:18:00.
10:20:00 MOT object will expire at 10:18:00 + 15 minutes
(10:33:00); it is till valid now.
Return requested MOT object.
10:35:00 MOT object expires at 10:18:00 + 15 minutes

(10:33:00); itisno longer valid now and therefore not
returned (but probably still kept in the cache until
validity of the object can later be re-confirmed)

Indicate that object is not available.

ETSI

76 draft EN 301 234 V2.1.1 (2004-08-12)

Annex F (informative):
Managing changes to the MOT data carousel

The followings sub clauses outline how the content provider will manage changesto his data carousel.

F.1 General principle

The MOT directory is usually periodically transmitted in parallel to the MOT bodies. The bitrate of the MOT directory
will usually be some predefined percentage of the total bitrate used by the content provider.

On start-up of the MOT decoder no MOT object can be reassembled before the MOT directory is successfully
reassembled and processed for the first time. Therefore the cycle time between two retransmissions of the MOT directory
isan important factor to determine how fast data can be accessed on start-up of the MOT decoder and how fast changes
to the data carousel propagate to the MOT decoder. To assure that the MOT directory can be sent frequently enough
without requiring too much channel capacity, the MOT directory should be made as small as possible (e.g., by using
short Cont ent Nanes) and MOT directory compression should be used (if permitted by the user application
definition).

If achange to the set of broadcast objects is made, then the content provider will stop sending the old MOT directory
and he will al'so stop sending MOT segments of MOT bodies that are no longer part of the updated data carousel.

He will then set up the new MOT directory describing the current state of the data carousel and send this new MOT
directory (with anew Transportld) for some time (to "assure" reception). Then he will start sending the new and updated
MOT bodies (in parallel to the MOT directory). After the new and updated objects were sent, the content provider will
continue sending the unchanged MOT objects.

Itisimportant that a change to the data carousel does not completely restart the transmission cycle.

To givean example:

If the data carousel cycleisfive minutes and some small object is changed every minute, then the data carousel shall not
restart from scratch and shall not start repeating the first minute of the data carousel without ever broadcasting the data
scheduled for the remaining four minutes.

It isalso important to assure that the Transportld of MOT bodiesis only changed if their header information, body
content or segmentation is changed. Every unnecessary change of the Transportld will cause simple MOT decoders to
discard all the already received segments of the MOT body!

The MOT parameter Uni queBodyVer si on should be provided so that the MOT decoder can easily determineif a
change of an object's Transportld also affected the MOT body. Whenever possible, the content provider should also
aim at permitting to keep outdated objects on receiver side (MOT parametersPer i t Qut dat edVer si ons and
Def aul t Per mi t Qut dat edVer si ons).

F.2 Advanced approach

In the above scenario the MOT directory will be sent quite often in case of a change to the data carousel. The repetition
of the MOT directory is necessary to assure that every MOT decoder will know the Transportlds of the new and
updated MOT objects. Simple MOT decoderswill discard all MOT segments whose Transportld they do not (yet) know.

Advanced MOT decoders collect MOT segments of MOT bodies whose Transportlds are not (yet) listed in the current
MOT directory (see sub clause C.3.4.1). Therefore the content provider can make faster changes to the data carousel and
then he needs less bitrate for the MOT directory.

In this case the content provider can send the new MOT directory in parallel to the new and updated MOT bodies. This
way the bitrate demand of the MOT directory will not increase with the update frequency of the data carousel. The
content provider will output MOT directory segmentsin regular intervals (depending on the bitrate assigned to the MOT
directory). If achangeto the data carousel is made, then segments of the new MOT directory are output; it is not
necessary to increase the bitrate of the MOT directory.

The above approach has the following implications:

ETSI

77 draft EN 301 234 V2.1.1 (2004-08-12)

MOT decodersthat collect MOT body segments with unknown Transportld in a"segment buffer" will be able
to use the previously collected MOT body segments as soon as the current (new) MOT directory isreceived.
However, sincethe MOT directory is needed to identify the MOT object these MOT body segments belong to,
the MOT decoder has to wait until the MOT directory isreceived and the collected MOT body segments are
"replayed” by the reassembly unit, before the MOT decoder can identify and forward a new or updated object
to the user application decoder.

MOT decodersthat do NOT collect MOT body segments with unknown Transportld will most likely miss many
of the new and updated MOT bodies on their first turn of the data carousel. They will probably need to wait an
additional turn of the data carousel.

The content provider has to assure that every version of the MOT directory is sent often enough so that it can
be reassembled even under bad reception condition. It is possible to repeat an "old" MOT directory in parallel
to new and updated (and unchanged) MOT bodies until a certain reception probability for the MOT directory
has been reached. Then all changesto the data carousel (no matter if there was one big change or many small
ones) can be combined in anew MOT directory that isthen again sent for sometime.

Note that collecting MOT body segmentsin a"segment buffer" not only permit faster changesto the data carousel. It
also provides better performance on MOT decoder startup and in case of reception errors during a change to the data
carousel (i.e., if the current (new) MOT directory could not be reassembled on the first transmission).

User applications that foresee fast changes to the data carousel should require collecting ("segment buffer") of MOT
body segments whose Transportlds are not (yet) listed in the current MOT directory (see sub clause C.3.4.1).

ETSI

78 draft EN 301 234 V2.1.1 (2004-08-12)

History
Document history
V111 January 1998 Publication
viz1 September 1998 | One-step Approval Procedure OAP9904: 1998-09-25 to 1999-01-22
viz21 February 1999 Publication

ISBN 2-7437-2875-2
Dépot Iégal : Février 1999

ETSI

